JENSEN'S NFU, 40 YEARS LATER

Ali Enayat

OBERSEMINAR MATHEMATISCHE LOGIK

Bonn, November 23, 2009

Genealogy of NFU

- 1879: Frege's Begriffsschrift.
- 1901: Russell's $\{\mathbf{x} : \mathbf{x} \notin \mathbf{x}\}$.
- 1908: Russell's Ramified Type Theory RTT.
- 1925: Ramsey's Simple Types Theory TT.
- 1937: Quine's New Foundations NF.
- 1940/1951: Quine's Mathematical Logic.
- 1953: Rosser's Logic for Mathematicians .
- 1953: Specker's refutation of AC in NF.
- 1962: Specker's equiconsistency proof of NF withTT + Ambiguity.
- 1969: Jensen's consistency proof of NFU.

- The *language* of NF is $\{=, \in\}$.
- The *logic* of NF is classical first order logic.
- The *axioms* of NF are Extensionality and Stratified Comprehension.
- φ is stratified if there is an integer valued function f whose domain is the set of **all** variables occurring in φ, which satisfies the following two requirements:
- f(v) + 1 = f(w), whenever $(v \in w)$ is a subformula of φ ;
- f(v) = f(w), whenever (v = w) is a subformula of φ .

- The formula x = x is stratifiable, so there is a universal set V in NF.
- NF proves that V is a Boolean algebra!
- Cardinals and ordinals are defined in NF in the spirit of Russell and Whitehead.
- $card(X) := \{Y : there is a bijection from X to Y\}.$
- Card := { λ : $\exists X \ (\lambda = card(X))$ exists in NF.
- Similarly, the set of all ordinals **Ord** exists in NF.

Cantor's Theorem in NF

- What about Cantor's card($\mathcal{P}(X)$) > card(X) for $X = \mathbf{V}$?
- In the usual proof of Cantor's Theorem, given f : X → P(X), we look at {x ∈ X : ¬(x ∈ f(x))}, whose defining equation is not stratifiable!
- USC(X) = {{x} : x \in X} exists, and in the NF context, Cantor's theorem is reformulated as $card(\mathcal{P}(X)) > card(USC(X)).$
- For a cardinal λ, let T(λ) := card(USC(X)), where X is some (any) element of λ, and define (in the metatheory):
- $\kappa_0 := \operatorname{card}(V);$
- $\kappa_{n+1} := T(\kappa_n).$
- NF $\vdash \kappa_0 > \kappa_1 > \cdots > \kappa_n > \cdots$

Cantorian and strongly Cantorian sets

- X is Cantorian if card(X) = card(USC(X)).
- X is strongly Cantorian if $\{\langle x, \{x\} \rangle : x \in X\}$ exists.
- Rosser's AxCount(Axiom of Counting): ℕ is strongly Cantorian.
- $\mathbb{N} := \{ \operatorname{card}(X) : \operatorname{fin}(X) \}.$
- fin(X):= "there is no injection from X into a proper subset of X".
- NF \vdash AxCount \leftrightarrow "all finite sets are Cantorian".
- Theorem (Orey, 1964) NF+ AxCount \vdash Con(NF).

- **Theorem (Hailperin, 1944).** NF is finitely axiomatizable, and NF = NF₆.
- Theorem (Grishin, 1969). $NF = NF_4$, and $Con(NF_3)$.
- Theorem (Boffa, 1977) $Con(NF) \Rightarrow NF \neq NF_3$.

Simple Theory of Types TT

• TT is formulated within *multi-sorted* first order logic with countably many sorts

 X_0, X_1, \cdots

• The language of TT is

$$\{\in_0,\in_1,\cdots\}\cup\{=_0,=_1,\cdots\}.$$

- The atomic formulas are of the form $x^n = y^n$, and $x^n \in y^{n+1}$.
- The axioms of TT consist of Extensionality and Comprehension.
- Extensionality: $\left(\left(\forall z^n((z^n \in_n x^{n+1} \leftrightarrow z^n \in_n y^{n+1})\right) \to x^{n+1} = y^{n+1}\right)$
- Comprehension: $\exists z^{n+1} (\forall y^n (y^n \in_n z^{n+1} \leftrightarrow \varphi(y^n)).$

- The ambiguity scheme consists of sentences of the form $\varphi \longleftrightarrow \varphi^+$, where φ^+ is the result of "bumping all types of φ by 1".
- **Theorem (Specker, 1960).** NF *is equiconsient with* TT + Ambiguity.
- Theorem (Boffa 1988; Kaye-Forster 1991). NFis consistent iff there is a model *M* of a weak fragment (KF) of Zermelo set theory that possess an automorphism j such that for some m ∈ *M*, *M* ⊨ |j(m)| = |*P*(m)|.

Jensen invents NFU

- Quine-Jensen set theory NFU: relax extensionality to allow urelements.
- ZBQC = Zermelo set theory with only Δ_0 -Comprehension.
- NFU⁺ := NFU + Infinity + Choice.
- $NFU^- := NFU + "V$ is finite" + Choice.
- Theorem (Jensen, 1968) .
- (1) Con (ZBQC) \Rightarrow Con (NFU⁺).
- (2) Con (PA) \Rightarrow Con (NFU⁻).
- (3) If ZF has an ω -standard model, then NFU has an ω -standard model.

Boffa's simplification of Jensen's proof

- Arrange a model $\mathcal{M} := (M, E)$ of ZBQC, and an automorphism j of \mathcal{M} such that
- (a) For some infinite $\alpha \in \mathcal{M}, j(\alpha) > \alpha$, and
- (b) V_{α} exists in \mathcal{M} ;
- Define E_{new} on $V_{\alpha}^{\mathcal{M}}$ by:

• $x E_{\text{new}} y \text{ iff } j(x)Ey \text{ and } \mathcal{M} \vDash y \in V_{j(\alpha)+1}.$

Reversal

- Hinnion and later (independently) Holmes showed that in NFU⁺ one can interpret (1) a 'Zermelian structure' Z that satisfies ZFC \ {Power Set}, and (2) a nontrivial endomorphism k of Z onto a proper initial segment of Z.
- The endomorphism k can be used to "unravel" Z to a model \overline{Z} of ZBQC that has a nontrivial automorphism j.
- Theorem (Jensen-Boffa-Hinion). NFU⁺ has a model iff there is a model \mathfrak{M} of Mac that has an automorphism j such that for some infinite ordinal α of \mathfrak{M} ,

$$\left(2^{|\alpha|}\right)^{\mathfrak{M}} \leq j(\alpha).$$

- Modulo the work of Jensen (and its simplification by Boffa), in order to arrange a model of NFU⁻ it suffices to build a model M of (IΔ₀ + Exp) with a nontrivial automorphism j such that for some m ∈ M, 2^m ≤ j(m).
- Solovay (2002, unpublished) has proved the following:

•
$$(I\Delta_0 + \text{Superexp}) \vdash$$

 $Con(NFU^{-}) \iff Con(I\Delta_0 + Exp).$

• $(I\Delta_0 + \operatorname{Exp}) + \operatorname{Con}(I\Delta_0 + \operatorname{Exp}) \nvDash$

 $Con(NFU^{-}).$

Natural extensions of NFUA⁻

- NFUA⁻ := NFU⁻+ "every Cantorian set is strongly Cantorian".
- VA := $I\Delta_0$ + "j is a nontrivial automorphism whose fixed point set is downward closed".
- **Theorem (E, 2006)**. VA can be (faithfully) interpreted in NFUA⁻.
- **Corollary**. ACA₀ is (faithfully) interpretable into VA.
- **Corollary (Solovay-E, 2006.)** What NFUA⁻ knows about Cantorian arithmetic is precisely PA.

- **Theorem (E, 2006).** The following two conditions are equivalent for any model \mathcal{M} of the language of arithmetic:
- (a) \mathcal{M} satisfies PA.
- (b) M = fix(j) for some nontrivial automorphism j of an end extension N of M that satisfies IΔ₀.

Largest initial segments fixed by automorphisms

- For $j \in Aut(\mathcal{M})$, $I_{fix}(j) := \{m \in M : \forall x \le m \ (j(x) = x)\}.$
- Theorem (E, 2006). The following two conditions are equivalent for a countable model \mathcal{M} of the language of arithmetic:
- (a) $\mathcal{M} \models I\Delta_0 + B\Sigma_1 + \mathsf{Exp.}$
- (b) M = I_{fix}(j) for some nontrivial automorphism j of an end extension N of M that satisfies IΔ₀.
- Here *B*Σ₁ is the Σ₁-collection scheme consisting of the universal closure of formulae of the form

$$[\forall x < a \exists y \ \varphi(x, y)] \rightarrow [\exists z \ \forall x < a \ \exists y < z \ \varphi(x, y)],$$

where φ is a Δ_0 -formula.

- NFUA⁺ := NFU⁺+ "every Cantorian set is strongly Cantorian".
- Λ_0 is

{ "there is an *n*-Mahlo cardinal": $n \in \omega$ }.

• Theorem (Solovay 1995, unpublished):

 $Con(NFUA^+) \iff Con(ZFC + \Lambda_0).$

- $\Lambda := \{$ "there is an *n*-Mahlo κ with $V_{\kappa} \prec_n \mathbf{V}$ ": $n \in \omega \}$.
- Λ_0 is weaker than Λ , but $Con(ZF + \Lambda_0) \iff Con(ZFC + \Lambda)$.
- **Theorem (E, 2003)** GBC + "**Ord** is weakly compact" *is (faithfully) interpretable in* NFUA⁺.
- Theorem (E, 2003) The first order part of GBC + "Ord is weakly compact" is precisely Λ.
- **Corollary.** What NFUA⁺ knows about CZ is precisely $ZFC + \Lambda$.

What is NFUB?

- NFUB^{+/-} is an extension of NFUA^{+/-}, obtained by adding a scheme that ensures that the intersection of every definable class with *CZ* is coded by some set.
- Holmes (1998) showed that NFUB⁺ canonically interprets KMC plus "**Ord** is weakly compact".
- Solovay (2000) constructed a model of NFUB⁺ from a model of KMC plus "Ord is weakly compact" in which "V = L".
- In work to appear, I have extended Solovay's construction to show that what NFUB⁺ knows about its canonical Kelley-Morse model is precisely:

KMC plus "**Ord** is weakly compact" plus Dependent Choice Scheme

- Z₂ is second order arithmetic (also known as *analysis*), and *DC* is the scheme of *Dependent Choice*.
- **Theorem (E 2006).** NFUB⁻ canonically interprets a model of $Z_2 + DC$. Moreover, every countable model of $Z_2 + DC$ is isomorphic to the canonical model of analysis of some model of NFUB⁻.
- Corollary. What NFUB⁻ knows about Analysis is precisely $Z_2 + DC$.

What NFU⁺ knows about Cantorian sets

- Let $\mathsf{KP}^\mathcal{P}$ be the natural extension of KP in which Σ_1 is replaced by $\Sigma_1^\mathcal{P}.$
- For a model *M* of KP^{*P*}, and an automorphism *j* of *M*, let
 V_{fix}(*M*, *j*) be the *longest rank initial segment* fixed by *j*.
- **Theorem** (E forthcoming) *The following are equivalent for a theory T in the language* {∈}:
- (a) T is a completion of $KP^{\mathcal{P}}$.
- (c) There is a model *M* of NFU⁺ + AxCount such that *T* is the first order theory of ("the largest rank initial segment of the Cantorian part of V")^{*M*}.