AN INEVITABLE EXTENSION OF ZFC

Ali Enayat

Kunen Fest, April 3, 2009

Mahlo Cardinals

- A Mahlo cardinal κ is a strongly inaccessible cardinal such that the regular cardinals below κ form a stationary subset of κ.
- For an ordinal α, the α-Mahlo cardinals are defined recursively as follows:
κ is 0-Mahlo if κ is strongly inaccessible;
For $\alpha=\delta+1, \kappa$ is a α-Mahlo if $\{\gamma<\kappa: \gamma$ is δ-Mahlo $\}$ is stationary in κ;

For limit α, κ is α-Mahlo if κ is δ-Mahlo for all $\delta<\alpha$.

Levy and Reflection

- Levy showed that Σ_{n}-truth is Σ_{n}-definable for $n \geq 1$ within $Z F$.
- In particular, for each natural number n there is a unary formula with the free variable α, denoted " $V_{\alpha} \prec_{n} \mathbf{V}$ ", that expresses:
for all Σ_{n}-formulae $\varphi\left(v_{1}, \cdots, v_{k}\right)$, and all

$$
\begin{gathered}
a_{1}, \cdots, a_{k} \text { in } V_{\alpha} \\
\varphi\left(a_{1}, \cdots, a_{k}\right) \leftrightarrow \varphi^{V_{\alpha}}\left(a_{1}, \cdots, a_{k}\right) .
\end{gathered}
$$

- For a unary formula $C(\alpha)$, possibly with suppressed parameters,

$$
\text { " }\{\alpha: C(\alpha)\} \text { is c.u.b." }
$$

stands for the formula expressing

$$
\text { " }\{\alpha \in \operatorname{Ord}: C(\alpha)\} \text { is c.u.b in Ord". }
$$

Levy and Reflection, cont'd

- Reflection Theorem (Montague 1957; Levy 1960) For each natural number $n, Z F$ proves that $\left\{\alpha: V_{\alpha} \prec_{n} \mathrm{~V}\right\}$ is c.u.b.
- Theorem (Levy 1960). For each natural numbers n, the following statement is provable within $Z F$:
(κ is ($n+1$)-Mahlo) $\rightarrow \exists \alpha<\kappa$ (α is n-Mahlo and $V_{\alpha} \prec V_{\kappa}$).

The Levy Scheme \wedge

- $\lambda_{m, n}(\kappa)$ is the sentence in set theory asserting that κ is an m-Mahlo cardinal and

$$
V_{\kappa} \prec_{n} \mathrm{~V} .
$$

- $\wedge:=\left\{\exists \kappa\left(\lambda_{n, n}(\kappa): n \in \omega\right\}\right.$.
- $\wedge_{1}:=\left\{\forall \alpha \in\right.$ Ord $\left.\exists \kappa>\alpha \lambda_{n, n}(\kappa): n \in \omega\right\}$.
- $\wedge_{2}:=\left\{\forall \alpha \in \operatorname{Ord} \exists \kappa>\alpha \lambda_{m, n}(\kappa): m \in \omega\right.$, $n \in \omega\}$.
- $\wedge_{3}:=\left\{\psi_{C(\alpha, x), n}: C=C(\alpha, x)\right.$ is a binary formula of set theory\}, where

$$
\begin{aligned}
\psi_{C, n} & :=\forall x[\{\alpha \in \text { Ord }: C(\alpha, x)\} \text { is c.u.b. } \\
& \rightarrow \exists \kappa C(\kappa, x) \text { and } \kappa \text { is } n \text {-Mahlo]. }
\end{aligned}
$$

Different Faces of \wedge

- Theorem (Levy 1960). Over ZF, the theories $\Lambda, \Lambda_{1}, \Lambda_{2}$, and Λ_{3} are pairwise equivalent.
- $\wedge_{0}:=\{\exists \kappa \kappa$ is n-Mahlo: $n \in \omega\}$.
- Proposition (Folklore)
(a) The theories $\mathrm{ZF}+\Lambda_{0}$ and $\mathrm{ZF}+\Lambda$ are equiconsistent.
(b) Moreover, assuming $\operatorname{Con}\left(\mathrm{ZF}+\Lambda_{0}\right)$, neither \wedge_{0}, nor \wedge is finitely axiomatizable over ZF.

The robustness of \wedge

- Theorem If $M \models \mathrm{ZFC}+\wedge$, and $c \in M$, then $(\mathbf{L}(\mathbf{c}))^{M} \models \wedge$.
- Theorem If $M \models \mathrm{ZFC}+\wedge$ and $\mathbb{P} \in M$ is a partial order, then for every \mathbb{P}-generic filter G over $M, M[G] \vDash \wedge$.
- Corollary. Suppose Con(ZF+ +). Then for any sentence ψ, $\operatorname{Con}(Z F+\Lambda+\psi)$ if at least one of the following conditions are true:
(a) ZF \vdash " ψ holds in \mathbf{L} ", or
(b) ZF \vdash "for some poset $\mathbb{P}, 1_{\mathbb{P}} \Vdash \psi$ ",

Finite Set Theory

- TC := "every set has a transitive closure".
- $\mathrm{ZF}_{\text {fin }}=\mathrm{ZF} \backslash\{$ Infinity $\}+\neg$ Infinity +TC.
- $\mathrm{GBC}_{\text {fin }}=\mathrm{GBC} \backslash\{$ Infinity $\}+\neg$ Infinity +TC.
- Theorem [Ackernann 1940, Kaye-Wong 2008]
(a) $\mathrm{ZF}_{\text {fin }}$ is bi-interpretable with PA.
(b) $\mathrm{GBC}_{\text {fin }}$ is bi-interpretable with ACA_{0}.

Inevitability of \wedge, Exhibit 1

- Let "Ord is WC" be the statement in class theory asserting that every "Ord-tree" has a branch of length Ord.
- Theorem [E 2004]
(a) If $(M, \mathcal{A}) \vDash \mathrm{GBC}+\operatorname{Ord}$ is WC , then $M \vDash$ ZFC $+\wedge$.
(b) Every completion of $Z F C+\wedge$ has a countable model that has an expansion to a model of GBC + Ord is WC.
- Corollary GBC+Ord is WC is a conservative extension of $\mathrm{ZFC}+\wedge$.
- Theorem (Folklore) GBC $_{\text {fin }}$ is a conservative extension of $\mathrm{ZF}_{\text {fin }}$.

Inevitability of \wedge, Exhibit 2

- $\operatorname{ZFC}(\mathrm{I})$ is a theory in the language $\{\in, \mathbf{I}(x)\}$, where $\mathbf{I}(x)$ is a unary predicate.
- The axioms of ZFC(I) are as follows.
(1) ZFC + All instances of replacement (hence separation) in $\{\in, \mathbf{I}(x)\}$;
(2) I is a cofinal subclass of ordinals;
(3) \mathbf{I} is a class of indiscernibles for (\mathbf{V}, \in).

Exhibit 2, Continued

- Theorem (E 2005). The following are equivalent for a completion T of ZFC:
(1) T has a model M that expands to a model (M, \mathbf{I}) \vDash ZFC(I).
(2) T has a model M that expands to $\left(M, \mathbf{I}_{n}\right)_{n<\omega}$ satisfying $\operatorname{ZF}\left(\left\{\mathbf{I}_{n}: n \in \omega\right\}\right)+{ }^{"} \mathbf{I}_{n+1}$ is a set of indiscernibles for $\left(\mathbf{V}, \mathbf{I}_{k}\right)_{k \leq n} "$.
(3) T is an extension of $\mathrm{ZFC}+\wedge$.
- Remark. If Replacement (I) is weakened to Separation(I),the resulting system is conservative over ZFC.
- Theorem [E 2005] $\mathrm{ZF}_{\text {fin }}(\mathrm{I})$ is a conservative extension of $\mathrm{ZF}_{\text {fin }}$.

Inevitability of \wedge, Exhibit 3

- Theorem. [E 2001] The Continuum Hypothesis is a sufficient, but not a necessary condition for every consistent extension of ZF to have an \aleph_{2}-like model.
- Theorem [Kaufmann, E 1984] Every completion of ZFC has a θ-like model for every $\theta \geq \aleph_{1}$.
- Theorem. [E 2001] $\operatorname{Con}(Z F+$ there is an ω-Mahlo cardinal) implies consistency of "the only completions of ZFC that have an \aleph_{2}-like model are those containing $\wedge^{\prime \prime}$.
- Theorem (McDowell-Specker 1961). Every completion of $\mathrm{ZF}_{\text {fin }}$ has a θ-like model for every $\theta \geq \aleph_{1}$.

Inevitability of \wedge, Exhibit 4

- The theory NFU was introduced by Jensen as a modification of Quine's elegant formulation NF (New Foundations) of Russell's theory of types.
- NF is a first order theory whose axioms consist of the stratifiable comprehension scheme and the usual extensionality axiom.
- The stratifiable comprehension scheme is the collection of sentences of the form " $\{x$: $\varphi(x)\}$ exists", provided there is an integer valued function f whose domain is the set of all variables occurring in φ, which satisfies the following two requirements: (1) $f(v)+1=f(w)$, whenever $(v \in w)$ is a subformula of φ; (2) $f(v)=f(w)$, whenever $(v=w)$ is a subformula of φ.

Exhibit 4, Continued

- Jensen's variant NFU of NF is obtained by modifying the extensionality axiom so as to allow urelements.
- Theorem (Jensen 1968)
(a) $\operatorname{Con}(P A) \Rightarrow \operatorname{Con}(N F U+\neg$ Infinity $)$.
(b) $\operatorname{Con}(Z) \Rightarrow \operatorname{Con}(N F U+$ Choice + Infinity $)$
- X is Cantorian if there is a one-to-one correspondence between X and $\{\{v\}: v \in X\}$; X is strongly Cantorian if the map sending v to $\{v\}$ (as v varies in X) exists;
- $\mathrm{H}:=$ "every Cantorian set is strongly Cantorian"
- NFUA $:=$ NFU + Infinity + Choice +H .
- NFUA $_{\text {fin }}:=$ NFUA $\backslash\{$ Infinity $\}+\{\neg$ Infinity $\}$.

Exhibit 4, Continued

- Theorem (Solovay, 1995) Con $\left(\right.$ ZFC $\left.+\Lambda_{0}\right) \Leftrightarrow$ Con(NFUA).
- Theorem (E 2002) The following are equivalent for a theory T in the language $\{\in\}$:
(a) T is a consistent completion of $Z F C+$ \wedge.
(b) There is a model M of NFUA such that $T=\operatorname{Th}$ ("Cantorian part of V " $)^{M}$.
- Theorem (Solovay-E, 2002). The analogue of the above theorem holds for $\mathrm{ZF}_{\text {fin }}$ and $\mathrm{NFUA}_{\text {fin }}$, in particular:
$\operatorname{Con}\left(\mathrm{NFUA}_{\text {fin }}\right) \Leftrightarrow \operatorname{Con}\left(\mathrm{ZF}_{\text {fin }}\right)$.

Inevitability of \wedge, Exhibit 5

- EST is ZFC $\backslash\{$ Power Set, Replacement $\}+\Delta_{0^{-}}$ Separation.
- GW is the axiom in the language $\{\in, \triangleleft\}$ that is the conjunction of the following 4 axioms:
(1) \triangleleft totally orders the universe; (2) Every nonempty set has a \triangleleft-least element, (3)
$x \in y \rightarrow x \triangleleft y$; (4) $\forall x \exists y \forall z(z \in y \longleftrightarrow z \triangleleft x)$.

Exhibit 5, Continued

- Theorem [E 2004]
(a) For every completion T of $\mathrm{ZFC}+\Lambda$ there is a model M_{0} of $T+\mathrm{ZF}(\triangleleft)+\mathrm{GW}$ such that M_{0} has a proper e.e.e. M such that for some automorphism f of M, the fixed point set of f is M_{0}.
(b) Moreover, if j is an automorphism of $M \models$ EST whose fixed point set M_{0} is a $\triangleleft-$ initial segment of N, then $M_{0} \vDash$ ZFC $+\wedge$.

- Theorem

(a) (Gaifman) The analogue of (a) above for $\mathrm{ZF}_{\text {fin }}$.
(b) (E 2004) The analogue of (b) above for $\mathrm{ZF}_{\text {fin }}$ (with $\mathrm{I}-\Delta_{0}$ instead of EST).

