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OVERVIEW

• The study of nonstandard models of set

theory arise in the following contexts:

(a) Foundations of nonstandard analysis;

(b) Generalized quantifiers;

(c) Consistency/independence results;

(d) Model theory of set theory.



BASICS (1)

• Models of set theory are of the form M =

(M, E), where E = ∈M .

• M is standard if E is well-founded.

• M is ω-standard if (ω, <)M ∼= (ω, <).

• Proposition. M is nonstandard iff

(Ord,∈)M is not well-founded.

• Proposition. Every M has an elementary

extension that is not ω-standard.



BASICS (2)

• For M = (M, E), and m ∈ M,

mE := {x ∈ M : xEm}.

• Suppose M ⊆ N = (N, F ) with m ∈ M. N is
said to fix m if mE = mF , else N enlarges
m.

• N end extends M if mE = mF for every
m ∈ M.

• N rank extends M if for every x ∈ N\M,
and every y ∈ M , N ² ρ(x) > ρ(y).

• Proposition. Rank extensions are end ex-
tensions, but not vice-versa.

• Proposition. Elementary end extensions
are rank extensions.



Keisler-Morely Theorem

• Theorem [Keisler-Morley, 1968]. Suppose

M is a countable model of: ZFC for (a) and

ZC for (b).

(a) For every prescribed linear order L, M

has an elementary end extension N which

has a copy of L in OrdN;

(b) If κ ∈ OrdM is a prescribed regular

cardinal in the sense of M, then there is

an elementary extension N = (N, F ) such

that N enlarges κ and contains a copy of

Q, but N fixes every member of κ.

• Corollary. If M is a countable model of

Z, and κ ∈ OrdM is a prescribed regular

cardinal in the sense of M, then there is

an elementary extension N = (N, F ) such

that N enlarges κ and is ℵ1-like.



Proof of Part (b) of Keisler-Morley’s Theorem

• Let B be the Boolean algebra P(κ)M and
let U be an ultrafilter on B. We wish to
define the (limited) ultrapower

M∗U

• Let F be the family of all maps (κV)M ,
and given f and g in F, define

f ∼U g ⇐⇒ {m ∈ M : f(m) = g(m)} ∈ U .

• The universe of M∗
U consists of the ∼U

equivalence classes [f ]U of members f of
F. The membership relation F on M∗

U is
defined precisely via

〈[f ]U , [g]U〉 ∈ F ⇐⇒ {m ∈ M : M∗
U ² f(m) ∈ g(m)} ∈ U .



Proof of Part (b) of Keisler-Morley’s

Theorem, Cont’d

• Theorem (ÃLoś-style theorem). For any

first order formula ϕ(x1, · · ·, xn) and any

sequence [f1]U , · · ·, [fn]U the following two

conditions are equivalent:

1. M∗U ² ϕ([f1]U , · · ·, [fn]U);

2. {m ∈ M : M∗U ² ϕ(f1(m), · · ·, fn(m))} ∈ U .

• Proposition There is a nonprincipal ultra-

filter U on B such that for f ∈ F whose

range is bounded in κ, there is some X ∈ U
such that the restriction of f to X is con-

stant.



Proof of Part (b) of Keisler-Morley’s
Theorem, Cont’d

• Use the Proposition to build an appropriate
ultrafilter on B, and form the ultrapower
M∗U .

• By the ÃLoś-style theorem, M∗U is an ele-
mentary extension of M, here we are iden-
tifying [ca]U with the element a ∈ M , where
ca : κ → {a}.

• The fact that U is nonprincipal ensures that
M∗U is a proper extension of M (since the
equivalence class [id]U of the identity func-
tion is not equal to any [ca]U).

• Moreover, the fact that any function in F
with bounded co-domain is constant on a
member of U, can be easily seen to imply
that M∗U an fixes every element of κ.



L(Qℵ1
) via Keisler-Morely (1)

• L(Q) is the extension of first order logic ob-
tained by adding a new (unary) quantifier
Q.

• Weak models of L(Q) are of the form (M, q),
where q ⊆ P(M). The Tarski-style defini-
tion of satisfaction for weak-models has
the new clause:

(M, q) ² Qxϕ(x) ⇐⇒ {m ∈ M : (M, q) ² ϕ(m)} ∈ q.

• A (strong) model of L(Q) in the κ-interpretation
(where κ is an infinite cardinal) is of the
form (M, [M ]≥κ), where κ is an infinite car-
dinal. Here

[M ]≥κ := {X ⊆ M : |X| ≥ κ}.

• We shall write Qκ when Q is interpreted in
the κ-interpretation. V al(L(Qκ)) is the set
of valid sentences of L(Qκ).



L(Qℵ1
) via Keisler-Morely (2)

• Theorem [Mostowski 1957].

1. V al(L(Qℵ0
)) is not recursively enumerable.

2. L(Qℵ0
) is not countably compact.

• Theorem [Vaught 1964].

1. L(Qℵ0
) is countably compact.

2. V al(L(Qℵ1
)) is recursively enumerable.



L(Qℵ1
) via Keisler-Morely (3)

Outline of Proof of countable compact-

ness of L(Qℵ1
):

Suppose Σ = {σn : n ∈ ω} is a countable set of

L(Q)-sentences such that every finite subset of

Σ has a model in ℵ1-interpretation.

Use compactness for first order logic to get

hold of a countable non ω-standard model M

of “enough set theory” such that there is some

model A in M with all n ∈ ω,

∀n ∈ ω M ² “A ² σn”.

Now use the Keisler-Morely theorem to enlarge

M to a model N of set theory such that (ℵ1)
Nis

ℵ1-like.

It is now routine to show that AN is a model

of Σ in the ℵ1-interpretation.



A curious Independence Result

• Theorem [Cohen 1971]. There is a model
of ZF with an automorphism of order 2.

• Remarks:

(1) Every standard model of the extension-
ality axiom is rigid.

(2) It is known that if M is a model of
ZF plus (either AC, or the “the Leibniz-
Myscielski axiom”), and j is an automor-
phism of M that fixes all the ordinals of
M, then j is the identity on M.

• Consequently, Cohen’s theorem yields a new
proof of the independence of the axiom of
choice from ZF that necessarily uses non-
standard models.



A Theorem of Friedman

• Theorem [Friedman, 1973]. Every count-

able nonstandard model of ZF is isomor-

phic to a proper rank initial segment of

itself.

Outline of proof for non ω-standard

models:

(1) Suppose M is a countable non ω-standard

model of ZF , and fix a nonstandard integer H

in M.

(2) For each ordinal α of M, let

Tα := (Th(Vα,∈) ∩ {x ∈ ω : x < H})M .

Note that
(
Tα ∈ 2H

)M
.



Proof of Friedman’s Theorem, Cont’d

(3) Invoking the replacement scheme, there is

some K ∈
(
2H

)M
such that M satisfies “{α ∈

Ord : Tα = K is cofinal in the class of ordi-
nals”}.

(4) By the Keisler-Morely theorem, there is an
e.e.e. N of M, and by (3), there is some β ∈
N\M such that Tβ = k.

(5) Since M is a non ω-standard model of ZF,

any structure in M is recursively saturated.

(6) [Folklore] Any two recursively saturated
countable models of set theory that are (a)
elementary equivalent, and (b) have the same
“standard system” are isomorphic.

(7) Therefore (Vα,∈)M ∼=
(
Vβ,∈

)M
for some

β ∈ M.

(8) The rest is easy!



A weak fragment of set theory

• EST (L) [Elementary Set Theory] is obtained

from the usual axiomatization of ZFC(L)

by deleting Power Set and Replacement,

and adding ∆0(L)-Separation.

• GW0 [Global Well-ordering] is the axiom

expressing “C well-orders the universe”.

• GW is the strengthening of GW0 obtained

by adding the following two axioms to GW0:

(a) ∀x∀y(x ∈ y → x C y);

(b) ∀x∃y∀z(z ∈ y ←→ z C x).



ZFC+‘Reflective’ Mahlo Cardinals

• Φ is

{(κ is n-Mahlo and Vκ ≺Σn V) : n ∈ ω}.

• Theorem [E, 2004]. The following are

equivalent for a model M of the language

L = {∈, C}.

(a) M = fix(j) for some j ∈ Aut(M∗),
where M∗ ² EST (L) + GW and M∗ end

extends M∗.

(b) M ² ZFC + Φ.



A KEY EQUIVALENCE

• Theorem. If (M,A) ² GBC + “Ord is

weakly compact”, then M ² ZFC + Φ.

• Theorem. Every countable recursively sat-

urated model of ZFC+Φ can be expanded

to a model of GBC +“Ord is weakly com-

pact”.

• Corollary. GBC + “Ord is weakly com-

pact” is a conservative extension of ZFC+

Φ.



Large Cardinals and Automorphisms

• Suppose M is an C-initial segment of M∗ :=

(M∗, E, <). We define:

SSy(M∗, M) = {aE ∩M : a ∈ M∗},

where aE = {x ∈ M∗ : xEa}.

• Theorem. If j is an automorphism of a

model M∗ = (M∗, E, <) of

EST ({∈, C}) + GW

whose fixed point set M is a C-initial seg-

ment of M∗, and A := SSy(M∗, M), then

(M,A) ² GBC+“Ord is weakly compact”.


