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OVERVIEW

e [ he study of nonstandard models of set
theory arise in the following contexts:

(a) Foundations of nonstandard analysis;
(b) Generalized quantifiers;
(c) Consistency/independence results;

(d) Model theory of set theory.



BASICS (1)

Models of set theory are of the form 9 =
(M, E), where E = &M,

M is standard if E is well-founded.

M is w-standard if (w, <)M =2 (w, <).

Proposition. 91 is nonstandard iff

(Ord, €)™ is not well-founded.

Proposition. Every 91 has an elementary
extension that is not w-standard.



BASICS (2)

For M= (M, FE), and m € M,
mp ={x € M : xEm}.

Suppose M C N = (N, F) with me M. N is
said to fix m if mgp = mp, else N enlarges
m.

N end extends M if mp = mp for every
m € M.

N rank extends M if for every z € N\ M,
and every y € M, ME p(x) > p(y).

Proposition. Rank extensions are end ex-
tensions, but not vice-versa.

Proposition. Elementary end extensions
are rank extensions.



Keisler-Morely Theorem

e Theorem [Keisler-Morley, 1968]. Suppose
M is a countable model of: ZFC for (a) and
ZC for (b).

(a) For every prescribed linear order L, 9N
has an elementary end extension )Xt which
has a copy of L in Ordm;

(b) If k € Ord™ is a prescribed regular
cardinal in the sense of 9, then there is
an elementary extension Yt = (N, F) such
that N1 enlarges k and contains a copy of
Q, but I fixes every member of k.

e Corollary. If 9 is a countable model of
Z, and k € Ord™ js a prescribed regular
cardinal in the sense of X, then there is
an elementary extension Yt = (N, F) such
that )t enlarges k and is Xq-like.



Proof of Part (b) of Keisler-Morley’'s Theorem

e Let B be the Boolean algebra P(x)™ and
let U be an ultrafilter on B. We wish to
define the (limited) ultrapower

2Ly

o Let F be the family of all maps ("‘“V)Em ,
and given f and g in F, define

fryg<—{meM: f(m)=g(m)} €U.

e The universe of M7 consists of the ~yy
equivalence classes [f];; of members f of
F. The membership relation F' on 9 is
defined precisely via

([flu, 9lu) € F <= {m e M : M = f(m) € g(m)} € U.



Proof of Part (b) of Keisler-Morley's
Theorem, Cont'd

e Theorem (tos-style theorem). For any
first order formula ©(xq1,- - -,xn) and any
sequence [fily,- - -, [fnly the following two
conditions are equivalent:

1. 90, E o(lflu, - - Lnle);

2. {m e M M E p(f1(m), -, fu(m))} €U.

e Proposition T here is a nonprincipal ultra-
filter U on B such that for f € F whose
range is bounded in k, there is some X € U
such that the restriction of f to X is con-
stant.



Proof of Part (b) of Keisler-Morley's
Theorem, Cont'd

Use the Proposition to build an appropriate
ultrafilter on B, and form the ultrapower

By the t.0S-style theorem, zm;;, IS an ele-
mentary extension of 9, here we are iden-
tifying [cqlyy With the element a € M, where
ca - kK — {a}.

The fact that &/ is nonprincipal ensures that
My, is a proper extension of IM (since the
equivalence class [id];; of the identity func-
tion is not equal to any [cqly)-

Moreover, the fact that any function in F
with bounded co-domain is constant on a
member of U, can be easily seen to imply
that E)ﬁzf{ an fixes every element of k.



L(Qy,) Via Keisler-Morely (1)

e L(Q) is the extension of first order logic ob-
tained by adding a new (unary) quantifier

Q.

e Weak models of L((Q) are of the form (9N, q),
where ¢ C P(M). The Tarski-style defini-
tion of satisfaction for weak-models has
the new clause:

(M, q) F Qrp(z) <= {me M :(M,q)Fe(m)} €q.

e A (strong) model of L(Q) in the k-interpretation
(where k is an infinite cardinal) is of the
form (O, [M]2%), where & is an infinite car-
dinal. Here

[M]ZF = {X C M : |X|> &}

e We shall write QQx when @ is interpreted in
the k-interpretation. Val(L(Qx)) is the set
of valid sentences of L(Qx).



L(Qy,) Vvia Keisler-Morely (2)

e Theorem [Mostowski 1957].

1. Val(L(Qy,)) is not recursively enumerable.

2. L(Qy,) s not countably compact.

e Theorem [Vaught 1964].

1. L(Qy,) is countably compact.

2. Val(L(Qy,)) Is recursively enumerable.



L(Qy,) via Keisler-Morely (3)

Outline of Proof of countable compact-
ness of L(Qy,):

Suppose > = {oy : n € w} is a countable set of
L(Q)-sentences such that every finite subset of
2. has a model in Ni-interpretation.

Use compactness for first order logic to get
hold of a countable non w-standard model 91
of “enough set theory” such that there is some
model 2 in <M with all n € w,

Vnéew IME “UAFEo,".

Now use the Keisler-Morely theorem to enlarge
M to a model I of set theory such that (Nl)mis
Nq-like.

It is now routine to show that 2™ is a model
of 2 in the Ni-interpretation.



A curious Independence Result

e Theorem [Cohen 1971]. There is a model
of ZF with an automorphism of order 2.

¢ Remarks:

(1) Every standard model of the extension-
ality axiom is rigid.

(2) It is known that if 9 is a model of
ZF plus (either AC, or the “the Leibniz-
Myscielski axiom’ ), and j is an automor-
phism of 9 that fixes all the ordinals of
I, then j is the identity on 9.

e Consequently, Cohen’s theorem yields a new
proof of the independence of the axiom of
choice from ZF' that necessarily uses non-
standard models.



A Theorem of Friedman

e Theorem [Friedman, 1973]. Every count-
able nonstandard model of ZF' is isomor-
phic to a proper rank initial segment of
itself.

Outline of proof for non w-standard
modaels:

(1) Suppose M is a countable non w-standard
model of ZF', and fix a nonstandard integer H
in ON.
(2) For each ordinal o of I, let

To ;= (Th(Ve,e)N{zcw: < H})im

Note that (Ta c 2H)m.



Proof of Friedman’'s Theorem, Cont'd

(3) Invoking the replacement scheme, there is

om
some K € (QH) such that 91 satisfies “{a €
Ord : T, = K is cofinal in the class of ordi-
nals” }.

(4) By the Keisler-Morely theorem, there is an
e.e.e. O of M, and by (3), there is some [ €
N\M such that Tg = k.

(5) Since M is a non w-standard model of ZF,
any structure in 9 is recursively saturated.

(6) [Folklore] Any two recursively saturated
countable models of set theory that are (a)
elementary equivalent, and (b) have the same
“standard system’’ are isomorphic.

M
(7) Therefore (V€)™ = (Vﬁ,e) for some
B e M.

(8) The rest is easy!



A weak fragment of set theory

e £ST(L) [Elementary Set Theory] is obtained
from the usual axiomatization of ZFC(L)
by deleting Power Set and Replacement,
and adding Ag(L)-Separation.

e GWy [Global Well-ordering] is the axiom
expressing ‘< well-orders the universe' .

e GW is the strengthening of GWy obtained
by adding the following two axioms to GWj:

(a) VaVy(x € y — = < y);

(b) VxayVvz(z € y «—— z < x).



/FCH‘Reflective’ Mahlo Cardinals

o d is

{(k is n-Mahlo and Vi <x V) :n € w}.

e Theorem [E, 2004]. The following are
equivalent for a model 9 of the language
L={e, <}

(a) M = fix(y) for some j € Aut(IN*),
where IM* E EST(L) + GW and 9M* end
extends .

(b) ME ZFC + o.



A KEY EQUIVALENCE

¢ Theorem. If (M, A) E GBC + “Ord is
weakly compact’”, then M E ZFC + &.

e T heorem. Every countable recursively sat-
urated model of ZFC+® can be expanded
to a model of GBC + "Ord is weakly com-
pact’ .

e Corollary. GBC + "Ord is weakly com-
pact’ is a conservative extension of ZFC+
P,



Large Cardinals and Automorphisms

e Suppose M is an <-initial segment of 9™ :
(M*, E,<). We define:

SSy(IMM*, M) ={ap N M :a e M*},

where agp = {x € M* : zFa}.

e Theorem. If 5 is an automorphism of a
model M* = (M*, E, <) of

EST({e,<}) + GW

whose fixed point set M is a <-initial seg-
ment of 9M*, and A .= SSy(IM*, M), then
(I, A) E GBC+ "Ord is weakly compact’ .



