IN PRAISE OF NONSTANDARD MODELS

Ali Enayat

Amsterdam Set Theory Meeting

August 13, 2007

OVERVIEW

- The study of nonstandard models of set theory arise in the following contexts:
 - (a) Foundations of nonstandard analysis;
 - (b) Generalized quantifiers;
 - (c) Consistency/independence results;
 - (d) Model theory of set theory.

BASICS (1)

- Models of set theory are of the form $\mathfrak{M} = (M, E)$, where $E = \in^{\mathfrak{M}}$.
- \mathfrak{M} is *standard* if *E* is well-founded.
- \mathfrak{M} is ω -standard if $(\omega, <)^{\mathfrak{M}} \cong (\omega, <)$.
- Proposition. \mathfrak{M} is nonstandard iff $(\operatorname{Ord}, \in)^{\mathfrak{M}}$ is not well-founded.
- **Proposition.** Every \mathfrak{M} has an elementary extension that is not ω -standard.

BASICS (2)

• For $\mathfrak{M} = (M, E)$, and $m \in M$,

$$m_E := \{ x \in M : xEm \}.$$

- Suppose $\mathfrak{M} \subseteq \mathfrak{N} = (N, F)$ with $m \in M$. \mathfrak{N} is said to fix m if $m_E = m_F$, else \mathfrak{N} enlarges m.
- \mathfrak{N} end extends \mathfrak{M} if $m_E = m_F$ for every $m \in M$.
- \mathfrak{N} rank extends \mathfrak{M} if for every $x \in N \setminus M$, and every $y \in M$, $\mathfrak{N} \models \rho(x) > \rho(y)$.
- **Proposition.** Rank extensions are end extensions, but not vice-versa.
- **Proposition.** Elementary end extensions are rank extensions.

• Theorem [Keisler-Morley, 1968]. Suppose \mathfrak{M} is a countable model of: ZFC for (a) and ZC for (b).

(a) For every prescribed linear order \mathbb{L} , \mathfrak{M} has an elementary end extension \mathfrak{N} which has a copy of \mathbb{L} in $\mathbf{Ord}^{\mathfrak{N}}$;

(b) If $\kappa \in \operatorname{Ord}^{\mathfrak{M}}$ is a prescribed regular cardinal in the sense of \mathfrak{M} , then there is an elementary extension $\mathfrak{N} = (N, F)$ such that \mathfrak{N} enlarges κ and contains a copy of \mathbb{Q} , but \mathfrak{N} fixes every member of κ .

• Corollary. If \mathfrak{M} is a countable model of Z, and $\kappa \in \operatorname{Ord}^{\mathfrak{M}}$ is a prescribed regular cardinal in the sense of \mathfrak{M} , then there is an elementary extension $\mathfrak{N} = (N, F)$ such that \mathfrak{N} enlarges κ and is \aleph_1 -like.

Proof of Part (b) of Keisler-Morley's Theorem

 Let B be the Boolean algebra P(κ)^M and let U be an ultrafilter on B. We wish to define the (limited) ultrapower

$\mathfrak{M}^*_{\mathcal{U}}$

• Let \mathcal{F} be the family of all maps $({}^{\kappa}\mathbf{V})^{\mathfrak{M}}$, and given f and g in \mathcal{F} , define

 $f \sim_{\mathcal{U}} g \iff \{m \in M : f(m) = g(m)\} \in \mathcal{U}.$

• The universe of $\mathfrak{M}_{\mathcal{U}}^*$ consists of the $\sim_{\mathcal{U}}$ equivalence classes $[f]_{\mathcal{U}}$ of members f of \mathcal{F} . The membership relation F on $\mathfrak{M}_{\mathcal{U}}^*$ is defined precisely via

 $\langle [f]_{\mathcal{U}}, [g]_{\mathcal{U}} \rangle \in F \iff \{ m \in M : \mathfrak{M}_{\mathcal{U}}^* \vDash f(m) \in g(m) \} \in \mathcal{U}.$

Proof of Part (b) of Keisler-Morley's Theorem, Cont'd

- **Theorem** (Łoś-style theorem). For any first order formula $\varphi(x_1, \dots, x_n)$ and any sequence $[f_1]_{\mathcal{U}}, \dots, [f_n]_{\mathcal{U}}$ the following two conditions are equivalent:
- 1. $\mathfrak{M}^*_{\mathcal{U}} \vDash \varphi([f_1]_{\mathcal{U}}, \cdots, [f_n]_{\mathcal{U}});$
- 2. $\{m \in M : \mathfrak{M}^*_{\mathcal{U}} \models \varphi(f_1(m), \cdots, f_n(m))\} \in \mathcal{U}.$
 - **Proposition** There is a nonprincipal ultrafilter \mathcal{U} on \mathbb{B} such that for $f \in \mathcal{F}$ whose range is bounded in κ , there is some $X \in \mathcal{U}$ such that the restriction of f to X is constant.

Proof of Part (b) of Keisler-Morley's Theorem, Cont'd

- Use the Proposition to build an appropriate ultrafilter on $\mathbb B,$ and form the ultrapower $\mathfrak M^*_{\mathcal U}.$
- By the Łoś-style theorem, $\mathfrak{M}_{\mathcal{U}}^*$ is an elementary extension of \mathfrak{M} , here we are identifying $[c_a]_{\mathcal{U}}$ with the element $a \in M$, where $c_a : \kappa \to \{a\}$.
- The fact that \mathcal{U} is nonprincipal ensures that $\mathfrak{M}^*_{\mathcal{U}}$ is a proper extension of \mathfrak{M} (since the equivalence class $[id]_{\mathcal{U}}$ of the identity function is not equal to any $[c_a]_{\mathcal{U}}$).
- Moreover, the fact that any function in \mathcal{F} with bounded co-domain is constant on a member of \mathcal{U} , can be easily seen to imply that $\mathfrak{M}^*_{\mathcal{U}}$ an fixes every element of κ .

 $L(Q_{\aleph_1})$ via Keisler-Morely (1)

- *L*(*Q*) is the extension of first order logic ob- tained by adding a new (unary) quantifier *Q*.
- Weak models of $\mathcal{L}(Q)$ are of the form (\mathfrak{M}, q) , where $q \subseteq \mathcal{P}(M)$. The Tarski-style definition of satisfaction for weak-models has the new clause:

 $(\mathfrak{M},q) \vDash Qx\varphi(x) \iff \{m \in M : (\mathfrak{M},q) \vDash \varphi(m)\} \in q.$

• A (strong) model of $\mathcal{L}(Q)$ in the κ -interpretation (where κ is an infinite cardinal) is of the form $(\mathfrak{M}, [M]^{\geq \kappa})$, where κ is an infinite cardinal. Here

$$[M]^{\geq \kappa} := \{ X \subseteq M : |X| \geq \kappa \}.$$

• We shall write Q_{κ} when Q is interpreted in the κ -interpretation. $Val(\mathcal{L}(Q_{\kappa}))$ is the set of valid sentences of $\mathcal{L}(Q_{\kappa})$. $L(Q_{\aleph_1})$ via Keisler-Morely (2)

- Theorem [Mostowski 1957].
- 1. $Val(\mathcal{L}(Q_{\aleph_0}))$ is not recursively enumerable.
- 2. $\mathcal{L}(Q_{\aleph_0})$ is not countably compact.
 - Theorem [Vaught 1964].
- 1. $\mathcal{L}(Q_{\aleph_0})$ is countably compact.
- 2. $Val(\mathcal{L}(Q_{\aleph_1}))$ is recursively enumerable.

$L(Q_{\aleph_1})$ via Keisler-Morely (3)

Outline of Proof of countable compactness of $\mathcal{L}(Q_{\aleph_1})$:

Suppose $\Sigma = \{\sigma_n : n \in \omega\}$ is a countable set of $\mathcal{L}(Q)$ -sentences such that every finite subset of Σ has a model in \aleph_1 -interpretation.

Use compactness for first order logic to get hold of a countable non ω -standard model \mathfrak{M} of "enough set theory" such that there is some model \mathfrak{A} in \mathfrak{M} with all $n \in \omega$,

$$\forall n \in \omega \quad \mathfrak{M} \vDash ``\mathfrak{A} \vDash \sigma_n''.$$

Now use the Keisler-Morely theorem to enlarge \mathfrak{M} to a model \mathfrak{N} of set theory such that $(\aleph_1)^{\mathfrak{N}}$ is \aleph_1 -like.

It is now routine to show that $\mathfrak{A}^{\mathfrak{N}}$ is a model of Σ in the \aleph_1 -interpretation.

A curious Independence Result

• **Theorem** [Cohen 1971]. *There is a model of ZF with an automorphism of order 2.*

• Remarks:

(1) Every standard model of the extensionality axiom is rigid.

(2) It is known that if \mathfrak{M} is a model of *ZF* plus (either *AC*, or the "the Leibniz-Myscielski axiom"), and *j* is an automorphism of \mathfrak{M} that fixes all the ordinals of \mathfrak{M} , then *j* is the identity on \mathfrak{M} .

 Consequently, Cohen's theorem yields a new proof of the independence of the axiom of choice from ZF that necessarily uses nonstandard models. A Theorem of Friedman

• **Theorem** [Friedman, 1973]. Every countable nonstandard model of ZF is isomorphic to a proper rank initial segment of itself.

Outline of proof for non ω -standard models:

(1) Suppose \mathfrak{M} is a countable non ω -standard model of ZF, and fix a nonstandard integer H in \mathfrak{M} .

(2) For each ordinal α of \mathfrak{M} , let

 $T_{\alpha} := (Th(V_{\alpha}, \in) \cap \{x \in \omega : x < H\})^{\mathfrak{M}}.$ Note that $(T_{\alpha} \in 2^{H})^{\mathfrak{M}}.$

Proof of Friedman's Theorem, Cont'd

(3) Invoking the replacement scheme, there is some $K \in (2^H)^{\mathfrak{M}}$ such that \mathfrak{M} satisfies " $\{\alpha \in \mathbf{Ord} : T_{\alpha} = K \text{ is cofinal in the class of ordi$ $nals"}\}.$

(4) By the Keisler-Morely theorem, there is an e.e.e. \mathfrak{N} of \mathfrak{M} , and by (3), there is some $\beta \in N \setminus M$ such that $T_{\beta} = k$.

(5) Since \mathfrak{M} is a non ω -standard model of ZF, any structure in \mathfrak{M} is recursively saturated.

(6) [Folklore] Any two recursively saturated countable models of set theory that are (a) elementary equivalent, and (b) have the same "standard system" are isomorphic.

(7) Therefore $(V_{\alpha}, \in)^{\mathfrak{M}} \cong (V_{\beta}, \in)^{\mathfrak{M}}$ for some $\beta \in M$.

(8) The rest is easy!

A weak fragment of set theory

- EST(L) [Elementary Set Theory] is obtained from the usual axiomatization of ZFC(L) by deleting Power Set and Replacement, and adding Δ₀(L)-Separation.
- GW_0 [Global Well-ordering] is the axiom expressing " \lhd well-orders the universe".
- GW is the strengthening of GW_0 obtained by adding the following two axioms to GW_0 :

(a)
$$\forall x \forall y (x \in y \rightarrow x \lhd y);$$

(b) $\forall x \exists y \forall z (z \in y \longleftrightarrow z \lhd x).$

ZFC+'Reflective' Mahlo Cardinals

Φ is

 $\{(\kappa \text{ is } n\text{-Mahlo and } V_{\kappa} \prec_{\Sigma_n} \mathbf{V}) : n \in \omega\}.$

 Theorem [E, 2004]. The following are equivalent for a model M of the language *L* = {∈, ⊲}.

(a) $\mathfrak{M} = fix(j)$ for some $j \in Aut(\mathfrak{M}^*)$, where $\mathfrak{M}^* \models EST(\mathcal{L}) + GW$ and \mathfrak{M}^* end extends \mathfrak{M}^* .

(b) $\mathfrak{M} \vDash ZFC + \Phi$.

A KEY EQUIVALENCE

- **Theorem.** If $(\mathfrak{M}, \mathcal{A}) \models GBC + "Ord is weakly compact", then <math>\mathfrak{M} \models ZFC + \Phi$.
- Theorem. Every countable recursively saturated model of $ZFC + \Phi$ can be expanded to a model of GBC + "Ord is weakly compact".
- Corollary. GBC + "Ord is weakly compact" is a conservative extension of ZFC+
 Φ.

Large Cardinals and Automorphisms

• Suppose M is an \triangleleft -initial segment of $\mathfrak{M}^* := (M^*, E, <)$. We define:

 $SSy(\mathfrak{M}^*, M) = \{a_E \cap M : a \in M^*\},\$

where $a_E = \{x \in M^* : xEa\}.$

• Theorem. If j is an automorphism of a model $\mathfrak{M}^* = (M^*, E, <)$ of

 $EST(\{\in,\lhd\}) + GW$

whose fixed point set M is a \triangleleft -initial segment of \mathfrak{M}^* , and $\mathcal{A} := SSy(\mathfrak{M}^*, M)$, then $(\mathfrak{M}, \mathcal{A}) \models GBC + "$ **Ord** is weakly compact".