A Model Theoretic Characterization of $I\Delta_0 + Exp + B\Sigma_1$

Ali Enayat

IPM Logic Conference

June 2007

Characterizing PA (1)

• **Theorem** (MacDowell-Specker) *Every model* of *PA* has an elementary end extension.

• Proof:

(1) Construct an ultrafilter \mathcal{U} on the parametrically definable subsets of \mathfrak{M} with the property that every definable map with bounded range is constant on a member of \mathcal{U} (this is similar to building a *p*-point in $\beta\omega$ using CH).

(2) Let $\prod_{\mathcal{U}} \mathfrak{M}$ be the Skolem ultrapower of \mathfrak{M} modulo \mathcal{U} . Then

$$\mathfrak{M} \prec_e \prod_{\mathcal{U}} \mathfrak{M}.$$

Characterizing PA (2)

• For each parametrically definable $X \subseteq M$, and $m \in M$,

$$(X)_m = \{ x \in M : \langle m, x \rangle \in X \}.$$

- \mathcal{U} is an *iterable* ultrafilter if for every $X \in \mathcal{B}$, $\{m \in M : (X)_m \in \mathcal{U}\}$ is definable in \mathfrak{M} .
- Theorem (Gaifman). Let M^{*} be the Ziterated ultrapower of M modulo an iterable nonprincipal ultrafilter U. Then for some j ∈ Aut(M^{*})

$$fix(j) = M.$$

Characterizing PA (3)

- Given a language $\mathcal{L} \supseteq \mathcal{L}_A$, an \mathcal{L} -formula φ is said to be a $\Delta_0(\mathcal{L})$ -formula if all the quantifiers of φ are bounded by terms of \mathcal{L} , i.e., they are of the form $\exists x \leq t$, or of the form $\forall x \leq t$, where t is a term of \mathcal{L} not involving x.
- Bounded arithmetic, or $I\Delta_0$, is the fragment of Peano arithmetic with the induction scheme limited to Δ_0 -formulae.
- I is a strong cut of $\mathfrak{M} \models I\Delta_0$, if for each function f whose graph is coded in M, and whose domain includes M, there is some s in M, such that for all $i \in I$,

$$f(i) \notin I \iff s < f(i).$$

Characterizing PA (4)

- **Theorem** (Kirby-Paris). *Strong cuts are models of PA*.
- Theorem. If $\mathfrak{M} \models I\Delta_0$ and $j \in Aut(\mathfrak{M})$ with $fix(j) \subsetneq_e M$, then fix(j) is a strong cut of \mathfrak{M} .
- **Theorem**. The following are equivalent for a model $\mathfrak{M} \models I \Delta_0$:

(a) $\mathfrak{M} \models PA$;

(b) There is some $\mathfrak{M}^* \supseteq_e \mathfrak{M}$ and some $j \in Aut(\mathfrak{M}^*)$ such that $\mathfrak{M}^* \models I \Delta_0$ and fix(j) = M.

Set Theory and Combinatorics within $I\Delta_0$ (1)

- Bennett showed that the graph of the exponential function $y = 2^x$ can be defined by a Δ_0 -predicate in the standard model of arithmetic. This result was later fine-tuned by Paris who found another Δ_0 -predicate Exp(x, y) which has the additional feature that $I\Delta_0$ can prove the usual algebraic laws about exponentiation for Exp(x, y).
- One can use Ackermann coding to simulate finite set theory and combinatorics within $I\Delta_0$ by using a Δ_0 -predicate E(x, y) that expresses "the *x*-th digit in the binary expansion of *y* is 1".
- E in many ways behaves like the membership relation \in ; indeed, it is well-known that \mathfrak{M} is a model of PA iff (M, E) is a model of $ZF \setminus \{\text{Infinity}\} \cup \{\neg \text{Infinity}\}$.

Set Theory and Combinatorics within $I\Delta_0$ (2)

• Theorem If $\mathfrak{M} \models I\Delta_0(\mathcal{L})$, and E is Ackermann's \in , then \mathfrak{M} satisfies the following axioms:

(a) *Extensionality*;

(b) Conditional Pairing $[\forall x \forall y \text{ "if } x < y \text{ and } 2^y \text{ exists, then } \{x, y\} \text{ exists"}]:$

(c) Union;

(d) Conditional Power Set $[\forall x("If 2^x ex-ists, then the power set of x exists")];$

(e) Conditional $\Delta_0(\mathcal{L})$ -Comprehension Scheme: for each formula $\Delta_0(\mathcal{L})$ -formula $\varphi(x, y)$, and any z for which 2^z exists, $\{xEz : \varphi(x, y)\}$ exists. Set Theory and Combinatorics within $I\Delta_0$ (3)

- $c_E := \{m \in M : mEc\}.$
- $X \subseteq M$ is *coded* in \mathfrak{M} , if for some $c \in M$ such that $X = c_E$.
- Given c ∈ M, c̄ := {x ∈ M : x < c}. Note that c̄ is coded in a model of IΔ₀ provided 2^c exists in M.
- $SSy_I(\mathfrak{M}) := \{c_E \cap I : c \in N\}.$
- Within I∆₀ one can define a partial function Card(x) = t, expressing "the cardinality of the set coded by x is t".
- I∆₀ can prove that Card(x) is defined (and is well-behaved) if 2^x exists.

Set Theory and Combinatorics within $I\Delta_0$ (4)

- In light of the above discussion, finite combinatorial statements have reasonable arithmetical translations in models of bounded arithmetic provided "enough powers of 2 exist".
- We shall therefore use the Erdős notation $a \rightarrow (b)_d^n$ for the *arithmetical* translation of the set theoretical statement:

"if Card(X) = a and $f : [X]^n \to \overline{d}$, then there is $H \subseteq X$ with Card(H) = b such that H is f-monochromatic."

• Here $[X]^n$ is the collection of *increasing* ntuples from X (where the order on X is inherited from the ambient model of arithmetic), and H is f-monochromatic iff f is constant on $[H]^n$. Set Theory and Combinatorics within $I\Delta_0$ (5)

 We also write a → *(b)ⁿ for the arithmetical translation of the following canonical partition relation:

if Card(X) = a and $f : [X]^n \to Y$, then there is $H \subseteq X$ with Card(H) = b which is *f*-canonical, i.e., $\exists S \subseteq \{1, \dots, n\}$ such that for all sequences $s_1 < \dots < s_n$, and $t_1 < \dots < t_n$ of elements of H,

 $f(s_1, \dots, s_n) = f(t_1, \dots, t_n) \iff \forall i \in S(s_i = t_i).$ Note that if $S = \emptyset$, then f is constant on $[H]^n$, and if $S = \{1, \dots, n\}$, then f is injective on $[H]^n$.

•
$$Superexp(0, x) = x$$
, and
 $Superexp(n + 1, x) = 2^{Superexp(n, x)}.$

Set Theory and Combinatorics within $I\Delta_0$ (6)

• Theorem. For each $n \in \mathbb{N}^+$, the following is provable in $I\Delta_0$:

(a) [Ramsey] $a
ightarrow (b)^n_c$,

if a = Superexp(2n, bc) and $b \ge n^2$;

(b) [Erdős-Rado] $a \rightarrow *(b)^n$,

if $a = Superexp(4n, b \cdot 2^{2^{2n^2}-n})$ and $b \ge 4n^2$.

On $I\Delta_0 + Exp$

• By a classical theorem of Parikh, $I\Delta_0$ can only prove the totality of functions with a polynomial growth rate, hence

$$I\Delta_0 \nvDash \forall x \exists y Exp(x,y).$$

• $I\Delta_0 + Exp$ is the extension of $I\Delta_0$ obtained by adding the axiom

$$Exp := \forall x \exists y Exp(x, y).$$

The theory $I\Delta_0 + Exp$ might not appear to be particularly strong since it cannot even prove the totality of the superexponential function, but experience has shown that it is a remarkably robust theory that is able to prove an extensive array of theorems of number theory and finite combinatorics.

On $B\Sigma_1$

• For $\mathcal{L} \supseteq \mathcal{L}_A$, $B\Sigma_1(\mathcal{L})$ is the scheme consisting of the universal closure of formulae of the form

 $[\forall x < a \exists y \varphi(x, y)] \rightarrow [\exists z \forall x < a \exists y < z \varphi(x, y)],$ where $\varphi(x, y)$ is a $\Delta_0(\mathcal{L})$ -formula.

- It has been known since the work of Parsons that there are instances of $B\Sigma_1$ that are unprovable in $I\Delta_0 + Exp$; indeed Parson's work shows that even strengthening $I\Delta_0 + Exp$ with the set of Π_2 -sentences that are true in the standard model of arithmetic fails to prove all instances of $B\Sigma_1$.
- However, Harvey Friedman and Jeff Paris have shown, independently, that adding $B\Sigma_1$ does not increase the Π_2 -consequences of $I\Delta_0 + Exp$.

- A Characterization of $I\Delta_0 + Exp + B\Sigma_1$
- $I_{fix}(j)$ is the largest initial segment of the domain of j that is pointwise fixed by j
- **Theorem A.** The following two conditions are equivalent for a countable model \mathfrak{M} of the language of arithmetic:

(1) $\mathfrak{M} \models I \Delta_0 + B \Sigma_1 + Exp.$

(2) $\mathfrak{M} = I_{fix}(j)$ for some nontrivial automorphism j of an end extension \mathfrak{M}^* of \mathfrak{M} that satisfies $I\Delta_0$.

Outline of the proof of $I_{fix}(j) \models Exp$

(1) If $a \in I_{fix}(j)$ and 2^a is defined in \mathfrak{M} , then $2^a \in I_{fix}(j)$.

The usual proof of the existence of the base 2 expansion for a positive integer y can be implemented within $I\Delta_0$ provided some power of 2 exceeds y. Therefore, for every $y < 2^a$, there is some element c that codes a subset of $\{0, 1, ..., a - 1\}$ such that $y = \sum_{i \in c} 2^i$.

The next observation is that j(c) = c. This hinges on the fact that E satisfies Extensionality, and that iEc implies j(i) = i (since $a \in I_{fix}(j)$, and iEc implies that i < a). Outline of the proof of $I_{fix}(j) \models Exp$, Cont'd

$$j(y) = j(\sum_{i \in c} 2^i) = \sum_{i \in j(c)} 2^i = \sum_{i \in c} 2^i = y.$$

So every $y < 2^a$ is fixed by j and therefore $2^a \in I_{fix}(j)$.

(2) $\{m \in M : m \text{ is a power of } 2\}$ is cofinal in \mathfrak{M} .

Now use (1) and (2) to prove that if $a \in I_{fix}(j)$, then 2^a is defined and is a member of $I_{fix}(j)$.

- Theorem (Wilkie-Paris). Every countable model of $I\Delta_0 + Exp + B\Sigma_1$ has an end extension to a model of $I\Delta_0 + B\Sigma_1$.
- \mathcal{F} is the family of all *M*-valued functions $f(x_1, \dots, x_n)$ on M^n (where $n \in \mathbb{N}^+$) such that for some Σ_1 -formula $\delta(x_1, \dots, x_n, y)$, δ defines the graph of f in \mathfrak{M} and for some term $t(x_1, \dots, x_n)$, $f(a_1, \dots, a_n) \leq t(a_1, \dots, a_n)$ for all $a_i \in M$.
- **Theorem** (Dimitracopoulos-Gaifman). If $\mathfrak{M} \models I \Delta_0 + B \Sigma_1$, then the expanded structure

 $\mathfrak{M}_{\mathcal{F}} := (\mathfrak{M}, f)_{f \in \mathcal{F}}$

satisfies $I\Delta_0(\mathcal{L}_{\mathcal{F}}) + B\Sigma_1(\mathcal{L}_{\mathcal{F}})$, where $\mathcal{L}_{\mathcal{F}}$ is the result of augmenting the language of arithmetic with names for each $f \in \mathcal{F}$. (A variant of) Paris-Mills Ultrapowers

- Suppose $\mathfrak{M} \models I\Delta_0 + B\Sigma_1$, *I* is a cut of \mathfrak{M} that satisfies Exp and $c \in M \setminus I$ such that 2^c exists in \mathfrak{M} (such an element *c* exists by Δ_0 -OVERSPILL).
- The index set is $\bar{c} = \{0, 1, \dots, c-1\}.$
- \mathcal{F}_c is the family of all *M*-valued functions $f(x_1, \dots, x_n)$ on $[c]^n$ (where $n \in \mathbb{N}$) obtained by restricting the domains of *n*-ary functions in \mathcal{F} to $[c]^n$ $(n \in \mathbb{N}^+)$.
- The family of functions used in the formation of the ultrapower is \mathcal{F}_c . The relevant Boolean algebra is denoted \mathcal{B}_c .

Desirable Ultrafilters (1)

- $\mathcal{U} \subseteq \mathcal{B}_c$ is canonically Ramsey if for every $f \in \mathcal{F}_c$ with $f : [\overline{c}]^n \to M$, there is some $H \in \mathcal{U}$ such that H is f-canonical;
- \mathcal{U} is *I*-tight if for every $f \in \mathcal{F}_c$ with if f: $[\overline{c}]^n \to M$, then there is some $H \in \mathcal{U}$ such either f is constant on H, or there is some $m_0 \in M \setminus I$ such that $f(\mathbf{x}) > m_0$ for all $\mathbf{x} \in [H]^n$.
- \mathcal{U} is *I-conservative* if for every $n \in \mathbb{N}^+$ and every \mathfrak{M} -coded sequence $\langle K_i : i < c \rangle$ of subsets of $[\overline{c}]^n$ there is some $X \in \mathcal{U}$ and some $d \in M$ with $I < d \leq c$ such that $\forall i < d$ X decides K_i , i.e., either $[X]^n \subseteq K_i$ or $[X]^n \subseteq [\overline{c}]^n \setminus K_i$.

Desirable Ultrafilters (2)

- **Theorem.** \mathcal{B}_c carries a nonprincipal ultrafilter \mathcal{U} satisfying the following four properties :
- (a) *U* is canonically Ramsey;

(b) \mathcal{U} is *I*-tight;

(c) $\{Card^{\mathfrak{M}}(X) : X \in \mathcal{U}\}$ is downward cofinal in $M \setminus I$;

(d) \mathcal{U} is *I*-conservative.

Fundamental Theorem

Theorem. Suppose I is a cut closed exponentiation in a countable model of IΔ₀,
 L is a linearly ordered set, and U satisfies the four properties of the previous theorem. One can use U to build a an elementary extension M^{*}_L of M that satisfies:

(a)
$$I \subseteq_{e} \mathfrak{M}_{\mathbb{L}}$$
 and $SSy_{I}(\mathfrak{M}_{\mathbb{L}}) = SSy_{I}(\mathfrak{M})$.

(b) \mathbb{L} is a set of indiscernibles in $\mathfrak{M}^*_{\mathbb{L}}$;

(c) Every $j \in Aut(\mathbb{L})$ induces an automorphism $\hat{j} \in Aut(\mathfrak{M}^*_{\mathbb{L}})$ such that $j \mapsto \hat{j}$ is a group embedding of $Aut(\mathbb{L})$ into $Aut(\mathfrak{M}^*_{\mathbb{L}})$;

(d) If $j \in Aut(\mathbb{L})$ is nontrivial, then $I_{fix}(\hat{j}) = I$; (e) If $j \in Aut(\mathbb{L})$ is fixed point free, then $fix(\hat{j}) = M$.