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Characterizing PA (1)

e Theorem (MacDowell-Specker) Every model
of PA has an elementary end extension.

e Proof:

(1) Construct an ultrafilter &4 on the para-
metrically definable subsets of 9 with the
property that every definable map with bounded
range is constant on a member of U (this

is similar to building a p-point in Bw using
CH).

(2) Let JI9M be the Skolem ultrapower of
U
M modulo U. Then

M <e [[M.
U



Characterizing PA (2)

e For each parametrically definable X C M,
and m € M,

(X)m = {z € M: (m,z) € X}.

e UM iS an iterable ultrafilter if for every X € B,
{me M : (X)m €U} is definable in M.

e Theorem (Gaifman). Let IM* be the Z-
iterated ultrapower of 9 modulo an iter-

able nonprincipal ultrafilter U. Then for
some j € Aut(ON*)

fix(j) = M.



Characterizing PA (3)

e Given a language £ DO L4, an L-formula
@ is said to be a Ag(L)-formula if all the
quantifiers of ¢ are bounded by terms of
L, i.e., they are of the form dx < t, or of
the form Vax < t, where t is a term of £ not
involving .

e Bounded arithmetic, or IAg, is the frag-
ment of Peano arithmetic with the induc-
tion scheme limited to Agp-formulae.

e [ is a strong cut of M F IAg, if for each
function f whose graph is coded in M, and
whose domain includes M, there is some s
in M, such that for all = € I,

@) ¢ 1 <= s < [f(i).



Characterizing PA (4)

e Theorem (Kirby-Paris). Strong cuts are
models of PA.

e Theorem. If M FE IAg and j € Aut(MN)
with fix(j) Ce M, then fix(j) is a strong
cut of .

e Theorem. The following are equivalent
for a model M FE IAg :

(a) MFE PA;

(b) There is some IM* D M and some j €
Aut(IN*) such that M* E IAg and fix(j) =
M.



Set Theory and Combinatorics within IAg (1)

e Bennett showed that the graph of the ex-
ponential function y = 2% can be defined
by a Ap-predicate in the standard model of
arithmetic. This result was later fine-tuned
by Paris who found another Ag-predicate
FExp(x,y) which has the additional feature
that 1Ay can prove the usual algebraic laws
about exponentiation for Exzp(x,y).

e One can use Ackermann coding to sim-
ulate finite set theory and combinatorics
within IAg by using a Ag-predicate E(x,y)
that expresses ‘“the xz-th digit in the binary
expansion of y is 1".

e £/ in many ways behaves like the mem-
bership relation €; indeed, it is well-known
that 9 is a model of PA iff (M,FE) is a
model of ZF\{Infinity} U {-Infinity}.



Set Theory and Combinatorics within I1Ag (2)

e Theorem If M E IAq(L), and E is Ack-

ermann’s €, then 9 satisfies the following
axioms:

(a) Extensionality;

(b) Conditional Pairing [VxVy “if x <y and
2Y exists, then {x,y} exists”]:

(c) Union,

(d) Conditional Power Set [Vx("“If 2% ex-
ists, then the power set of x exists”)];

(e) Conditional Ag(L)-Comprehension Scheme:
for each formula Ag(L)-formula p(x,y), and
any z for which 2% exists, {xEz : p(x,y)}
exists.



Set Theory and Combinatorics within IAg (3)

e cp:={m¢& M : mEc}.

o X C M is coded in I, if for some ¢ € M
such that X = cg.

e Given ce M, ¢ :={x € M : x < c¢}. Note
that ¢ is coded in a model of 1A provided
2¢ exists in 9.

o SSyr(M) :={cpNIl:ce N}.

e Within IAg one can define a partial func-
tion Card(x) = t, expressing ‘“the cardinal-
ity of the set coded by = is t".

e /A can prove that Card(x) is defined (and
is well-behaved) if 2% exists.



Set Theory and Combinatorics within IAqg (4)

e In light of the above discussion, finite com-
binatorial statements have reasonable arith-
metical translations in models of bounded
arithmetic provided “enough powers of 2
exist” .

e \We shall therefore use the Erdds notation
a — (b)7 for the arithmetical translation of
the set theoretical statement:

“if Card(X) = a and f : [X]® — d, then
there is H C X with Card(H) = b such
that H is f-monochromatic.”

e Here [X]" is the collection of increasing n-
tuples from X (where the order on X is
inherited from the ambient model of arith-
metic), and H is f-monochromatic iff f is
constant on [H]".



Set Theory and Combinatorics within IAg (5)

e We also write a — *(b)™ for the arithmeti-
cal translation of the following canonical
partition relation:

if Card(X) = a and f : [X]® — Y, then
there is H C X with Card(H) = b which
is f-canonical, i.e., 345 C {1,---,n} such
that for all sequences s1 < --- < sp, and
t1 < --- <tp of elements of H,

f(s1,,8n) = f(t1, -, tn) <= Vi € S(s; = t;).

Note that if S = 0, then f is constant on
[H]™, and if S = {1,---,n}, then f isinjective
on [H]".

e Superexp(0,z) = x, and

Superexp(n + 1,z) = pSuperexp(n,z),



Set Theory and Combinatorics within IAg (6)

e Theorem. For each n € N1, the following
Is provable in IAg

(a) [Ramsey] a — (b)7,

if a« = Superexp(2n,bc) and b > n?;
(b) [Erd6s-Rado] a — * (b)",

n2—n
if a = Superexp(4n, h.22° ) and b > 4nZ.



On IAg+ Exp

e By a classical theorem of Parikh, IAg can
only prove the totality of functions with a
polynomial growth rate, hence

IAg ¥ VxdyExzp(x,y).

o /IApg+ Exp is the extension of IAp obtained
by adding the axiom

FExp ;= VzdyExp(x,vy).

The theory IAg+ Exp might not appear to
be particularly strong since it cannot even
prove the totality of the superexponential
function, but experience has shown that it
IS a remarkably robust theory that is able
to prove an extensive array of theorems of
number theory and finite combinatorics.



On le

e For LD L4, BX1(L) is the scheme consist-
ing of the universal closure of formulae of
the form

[Vz < a Jy p(z,y)] — [F32 Vo < a Ty <2z o(z,y)],
where ¢o(x,y) is a Ag(L)-formula.

e It has been known since the work of Par-
sons that there are instances of B> 1 that
are unprovable in IAqg 4+ Exp; indeed Par-
son’s work shows that even strengthening
IAg + Exp with the set of [lly-sentences
that are true in the standard model of arith-
metic fails to prove all instances of B2 4.

e However, Harvey Friedman and Jeff Paris
have shown, independently, that adding B2 4
does not increase the ly-consequences of
I A+ Exp.



A Characterization of IAg+ Exzp+ B> 4

e I, (j) is the largest initial segment of the
domain of 5 that is pointwise fixed by j

e Theorem A. The following two conditions
are equivalent for a countable model 9t of
the language of arithmetic:

(1) MEIAg+ BX1{ + Exp.

(2) M = I;,(j) for some nontrivial auto-
morphism j of an end extension 9* of M
that satisfies 1Ag.



Outline of the proof of I¢;,(j) F Exp

(1) If a € I4;,(5) and 2% is defined in 91, then
2% € If'w:(])

The usual proof of the existence of the base 2
expansion for a positive integer y can be im-
plemented within IAg provided some power
of 2 exceeds y. Therefore, for every y < 2¢,
there is some element ¢ that codes a subset of
{0,1,...,a — 1} such that y = ¥ 2.
1Ec

The next observation is that j(¢) = ¢. This
hinges on the fact that E satisfies Extension-
ality, and that iEc implies j(i) = 7 (since a €
I4;(3), and iEc implies that i < a).



Outline of the proof of I;,.(j) F Exp, Cont'd

i) = §(Cigc2") = Xigje) 2" = Tipc 2" = .

So every y < 2% is fixed by 5 and therefore
2% € Ifzx(?)

(2) {m e M : m is a power of 2} is cofinal in
.

Now use (1) and (2) to prove that ifa € I7;,(j),
then 29 is defined and is a member of I;,.(j).



Two Key Results

e Theorem (Wilkie-Paris). Every countable
model of IAg+ Exp + B> has an end
extension to a model of I1Ag+ B2 1.

e F is the family of all M-valued functions
f(z1, -, xn) on M™ (where n € NT) such
that for some > q-formula 6(x1, -+, Tn,y), 0
defines the graph of f in Ot and for some

term t(ajla "',ZCn), f(a’la "'7a’n) < t(a’].? "'7an)
for all a; € M.

e Theorem (Dimitracopoulos-Gaifman). If
M E IAg+ B2q, then the expanded struc-
ture

Mr = M, f)rer

satisfies INg(Lr)+ BX1(Lr), Wwhere Lr is
the result of augmenting the language of
arithmetic with names for each f € F.



(A variant of) Paris-Mills Ultrapowers

e Suppose MFE IAg+ BXq, I is a cut of M
that satisfies Exp and ¢ € M\I such that
2¢ exists in M (such an element ¢ exists by
Ag-OVERSPILL).

e The index set is¢={0,1,---,c—1}.

e F. is the family of all M-valued functions
f(x1, -+, xn) on [c]™® (where n € N) obtained
by restricting the domains of n-ary func-
tions in F to [c]™ (n € NT).

e T he family of functions used in the forma-
tion of the ultrapower is F.. The relevant
Boolean algebra is denoted B..



Desirable Ultrafilters (1)

o { C B. is canonically Ramsey if for every
f € Fe with f : [€]* — M, there is some
H € U such that H is f-canonical;

e U4 is I-tight if for every f € F. with if f :
[c]" — M, then there is some H € U such
either f is constant on H, or there is some
mgo € M\I such that f(x) > mg for all x €
[H]™.

e U/ is I-conservative if for every n ¢ NT and
every I-coded sequence (K; : i < c¢) of sub-
sets of [¢]"™ there is some X € U and some
d € M with I < d < ¢ such that Vi < d
X decides K;, i.e., either [X]|™ C K, or
[X]™ C [e]™"\ K;.



Desirable Ultrafilters (2)

e T heorem. B. carries a nonprincipal ultra-
filter U satisfying the following four prop-
erties :

(a) U is canonically Ramsey;
(b) U is I-tight;

(c) {Card™(X) : X € U} is downward cofinal
in M\I,

(d) U is I-conservative.



Fundamental T heorem

e Theorem. Suppose I is a cut closed expo-
nentiation in a countable model of 1A,
L is a linearly ordered set, and U satisfies
the four properties of the previous theo-
rem. One can use U to build a an elemen-
tary extension Qﬁi of 9N that satisfies:

(@) I Ce My, and SSy;(My,) = SSyr(M).

(b) L is a set of indiscernibles in M ;

(c) Every j € Aut(IL) induces an automorphism
j € Aut(9M7) such that j — j is a group em-
bedding of Aut(L) into Aut(IMy ),

(d) If j € Aut(LL) is nontrivial, then I7;,(j) = I;

(e) If j € Aut(IL) is fixed point free, then

fix(7) = M.



