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Characterizing PA (1)

• Theorem (MacDowell-Specker) Every model

of PA has an elementary end extension.

• Proof:

(1) Construct an ultrafilter U on the para-

metrically definable subsets of M with the

property that every definable map with bounded

range is constant on a member of U (this

is similar to building a p-point in βω using

CH).

(2) Let
∏
U

M be the Skolem ultrapower of

M modulo U. Then

M ≺e
∏
U

M.



Characterizing PA (2)

• For each parametrically definable X ⊆ M,

and m ∈ M,

(X)m = {x ∈ M : 〈m, x〉 ∈ X}.

• U is an iterable ultrafilter if for every X ∈ B,

{m ∈ M : (X)m ∈ U} is definable in M.

• Theorem (Gaifman). Let M∗ be the Z-
iterated ultrapower of M modulo an iter-

able nonprincipal ultrafilter U. Then for

some j ∈ Aut(M∗)

fix(j) = M .



Characterizing PA (3)

• Given a language L ⊇ LA, an L-formula

ϕ is said to be a ∆0(L)-formula if all the

quantifiers of ϕ are bounded by terms of

L, i.e., they are of the form ∃x ≤ t, or of

the form ∀x ≤ t, where t is a term of L not

involving x.

• Bounded arithmetic, or I∆0, is the frag-

ment of Peano arithmetic with the induc-

tion scheme limited to ∆0-formulae.

• I is a strong cut of M ² I∆0, if for each

function f whose graph is coded in M , and

whose domain includes M, there is some s

in M , such that for all i ∈ I,

f(i) /∈ I ⇐⇒ s < f(i).



Characterizing PA (4)

• Theorem (Kirby-Paris). Strong cuts are

models of PA.

• Theorem. If M ² I∆0 and j ∈ Aut(M)

with fix(j) (e M , then fix(j) is a strong

cut of M.

• Theorem. The following are equivalent

for a model M ² I∆0 :

(a) M ² PA;

(b) There is some M∗ ⊇e M and some j ∈
Aut(M∗) such that M∗ ² I∆0 and fix(j) =

M .



Set Theory and Combinatorics within I∆0 (1)

• Bennett showed that the graph of the ex-
ponential function y = 2x can be defined
by a ∆0-predicate in the standard model of
arithmetic. This result was later fine-tuned
by Paris who found another ∆0-predicate
Exp(x, y) which has the additional feature
that I∆0 can prove the usual algebraic laws
about exponentiation for Exp(x, y).

• One can use Ackermann coding to sim-
ulate finite set theory and combinatorics
within I∆0 by using a ∆0-predicate E(x, y)
that expresses “the x-th digit in the binary
expansion of y is 1”.

• E in many ways behaves like the mem-
bership relation ∈; indeed, it is well-known
that M is a model of PA iff (M, E) is a
model of ZF\{Infinity} ∪ {¬Infinity}.



Set Theory and Combinatorics within I∆0 (2)

• Theorem If M ² I∆0(L), and E is Ack-

ermann’s ∈, then M satisfies the following

axioms:

(a) Extensionality;

(b) Conditional Pairing [∀x∀y “if x < y and

2y exists, then {x, y} exists”]:

(c) Union;

(d) Conditional Power Set [∀x(“If 2x ex-

ists, then the power set of x exists”)];

(e) Conditional ∆0(L)-Comprehension Scheme:

for each formula ∆0(L)-formula ϕ(x, y), and

any z for which 2z exists, {xEz : ϕ(x, y)}
exists.



Set Theory and Combinatorics within I∆0 (3)

• cE := {m ∈ M : mEc}.

• X ⊆ M is coded in M, if for some c ∈ M

such that X = cE.

• Given c ∈ M, c := {x ∈ M : x < c}. Note
that c is coded in a model of I∆0 provided
2c exists in M.

• SSyI(M) := {cE ∩ I : c ∈ N}.

• Within I∆0 one can define a partial func-
tion Card(x) = t, expressing “the cardinal-
ity of the set coded by x is t”.

• I∆0 can prove that Card(x) is defined (and
is well-behaved) if 2x exists.



Set Theory and Combinatorics within I∆0 (4)

• In light of the above discussion, finite com-
binatorial statements have reasonable arith-
metical translations in models of bounded
arithmetic provided “enough powers of 2
exist”.

• We shall therefore use the Erdős notation
a → (b)n

d for the arithmetical translation of
the set theoretical statement:

“if Card(X) = a and f : [X]n → d, then
there is H ⊆ X with Card(H) = b such
that H is f-monochromatic.”

• Here [X]n is the collection of increasing n-
tuples from X (where the order on X is
inherited from the ambient model of arith-
metic), and H is f-monochromatic iff f is
constant on [H]n.



Set Theory and Combinatorics within I∆0 (5)

• We also write a → ∗(b)n for the arithmeti-

cal translation of the following canonical

partition relation:

if Card(X) = a and f : [X]n → Y , then

there is H ⊆ X with Card(H) = b which

is f-canonical, i.e., ∃S ⊆ {1, · · ·, n} such

that for all sequences s1 < · · · < sn, and

t1 < · · · < tn of elements of H,

f(s1, ···, sn) = f(t1, ···, tn) ⇐⇒ ∀i ∈ S(si = ti).

Note that if S = ∅, then f is constant on

[H]n, and if S = {1, ···, n}, then f is injective

on [H]n.

• Superexp(0, x) = x, and

Superexp(n + 1, x) = 2Superexp(n,x).



Set Theory and Combinatorics within I∆0 (6)

• Theorem. For each n ∈ N+, the following

is provable in I∆0 :

(a) [Ramsey] a → (b)n
c ,

if a = Superexp(2n, bc) and b ≥ n2;

(b) [Erdős-Rado] a → ∗ (b)n,

if a = Superexp(4n, b ·222n2−n
) and b ≥ 4n2.



On I∆0 + Exp

• By a classical theorem of Parikh, I∆0 can

only prove the totality of functions with a

polynomial growth rate, hence

I∆0 0 ∀x∃yExp(x, y).

• I∆0+Exp is the extension of I∆0 obtained

by adding the axiom

Exp := ∀x∃yExp(x, y).

The theory I∆0+Exp might not appear to

be particularly strong since it cannot even

prove the totality of the superexponential

function, but experience has shown that it

is a remarkably robust theory that is able

to prove an extensive array of theorems of

number theory and finite combinatorics.



On BΣ1

• For L ⊇ LA, BΣ1(L) is the scheme consist-
ing of the universal closure of formulae of
the form

[∀x < a ∃y ϕ(x, y)] → [∃z ∀x < a ∃y < z ϕ(x, y)],

where ϕ(x, y) is a ∆0(L)-formula.

• It has been known since the work of Par-
sons that there are instances of BΣ1 that
are unprovable in I∆0 + Exp; indeed Par-
son’s work shows that even strengthening
I∆0 + Exp with the set of Π2-sentences
that are true in the standard model of arith-
metic fails to prove all instances of BΣ1.

• However, Harvey Friedman and Jeff Paris
have shown, independently, that adding BΣ1
does not increase the Π2-consequences of
I∆0 + Exp.



A Characterization of I∆0 + Exp + BΣ1

• Ifix(j) is the largest initial segment of the

domain of j that is pointwise fixed by j

• Theorem A. The following two conditions

are equivalent for a countable model M of

the language of arithmetic:

(1) M ² I∆0 + BΣ1 + Exp.

(2) M = Ifix(j) for some nontrivial auto-

morphism j of an end extension M∗ of M

that satisfies I∆0.



Outline of the proof of Ifix(j) ² Exp

(1) If a ∈ Ifix(j) and 2a is defined in M, then

2a ∈ Ifix(j).

The usual proof of the existence of the base 2

expansion for a positive integer y can be im-

plemented within I∆0 provided some power

of 2 exceeds y. Therefore, for every y < 2a,

there is some element c that codes a subset of

{0,1, ..., a− 1} such that y =
∑
iEc

2i.

The next observation is that j(c) = c. This

hinges on the fact that E satisfies Extension-

ality, and that iEc implies j(i) = i (since a ∈
Ifix(j), and iEc implies that i < a).



Outline of the proof of Ifix(j) ² Exp, Cont’d

j(y) = j(
∑

iEc 2
i) =

∑
iEj(c) 2i =

∑
iEc 2

i = y.

So every y < 2a is fixed by j and therefore

2a ∈ Ifix(j).

(2) {m ∈ M : m is a power of 2} is cofinal in

M.

Now use (1) and (2) to prove that if a ∈ Ifix(j),

then 2a is defined and is a member of Ifix(j).



Two Key Results

• Theorem (Wilkie-Paris). Every countable
model of I∆0 + Exp + BΣ1 has an end
extension to a model of I∆0 + BΣ1.

• F is the family of all M-valued functions
f(x1, · · ·, xn) on Mn (where n ∈ N+) such
that for some Σ1-formula δ(x1, · · ·, xn, y), δ

defines the graph of f in M and for some
term t(x1, ···, xn), f(a1, ···, an) ≤ t(a1, ···, an)
for all ai ∈ M.

• Theorem (Dimitracopoulos-Gaifman). If
M ² I∆0 + BΣ1, then the expanded struc-
ture

MF := (M, f)f∈F
satisfies I∆0(LF)+BΣ1(LF), where LF is
the result of augmenting the language of
arithmetic with names for each f ∈ F.



(A variant of) Paris-Mills Ultrapowers

• Suppose M ² I∆0 + BΣ1, I is a cut of M

that satisfies Exp and c ∈ M\I such that

2c exists in M (such an element c exists by

∆0-OVERSPILL).

• The index set is c = {0,1, · · ·, c− 1}.

• Fc is the family of all M-valued functions

f(x1, · · ·, xn) on [c]n (where n ∈ N) obtained

by restricting the domains of n-ary func-

tions in F to [c]n (n ∈ N+).

• The family of functions used in the forma-

tion of the ultrapower is Fc. The relevant

Boolean algebra is denoted Bc.



Desirable Ultrafilters (1)

• U ⊆ Bc is canonically Ramsey if for every

f ∈ Fc with f : [c]n → M, there is some

H ∈ U such that H is f-canonical;

• U is I-tight if for every f ∈ Fc with if f :

[c]n → M, then there is some H ∈ U such

either f is constant on H, or there is some

m0 ∈ M\I such that f(x) > m0 for all x ∈
[H]n.

• U is I-conservative if for every n ∈ N+ and

every M-coded sequence 〈Ki : i < c〉 of sub-

sets of [c]n there is some X ∈ U and some

d ∈ M with I < d ≤ c such that ∀i < d

X decides Ki, i.e., either [X]n ⊆ Ki or

[X]n ⊆ [c]n\Ki.



Desirable Ultrafilters (2)

• Theorem. Bc carries a nonprincipal ultra-

filter U satisfying the following four prop-

erties :

(a) U is canonically Ramsey;

(b) U is I-tight;

(c) {CardM(X) : X ∈ U} is downward cofinal

in M\I;

(d) U is I-conservative.



Fundamental Theorem

• Theorem. Suppose I is a cut closed expo-
nentiation in a countable model of I∆0,
L is a linearly ordered set, and U satisfies
the four properties of the previous theo-
rem. One can use U to build a an elemen-
tary extension M∗

L of M that satisfies:

(a) I ⊆e ML and SSyI(ML) = SSyI(M).

(b) L is a set of indiscernibles in M∗
L;

(c) Every j ∈ Aut(L) induces an automorphism
ĵ ∈ Aut(M∗

L) such that j 7→ ĵ is a group em-
bedding of Aut(L) into Aut(M∗

L);

(d) If j ∈ Aut(L) is nontrivial, then Ifix(ĵ) = I;

(e) If j ∈ Aut(L) is fixed point free, then

fix( ĵ) = M .


