A Model Theoretic Characterization of $I \Delta_{0}+E x p+B \Sigma_{1}$

Ali Enayat

IPM Logic Conference

June 2007

Characterizing PA (1)

- Theorem (MacDowell-Specker) Every model of $P A$ has an elementary end extension.

- Proof:

(1) Construct an ultrafilter \mathcal{U} on the parametrically definable subsets of \mathfrak{M} with the property that every definable map with bounded range is constant on a member of \mathcal{U} (this is similar to building a p-point in $\beta \omega$ using CH).
(2) Let $\prod_{\mathcal{U}} \mathfrak{M}$ be the Skolem ultrapower of \mathfrak{M} modulo \mathcal{U}. Then

$$
\mathfrak{M} \prec_{e} \underset{\mathcal{U}}{\boldsymbol{M}}
$$

Characterizing PA (2)

- For each parametrically definable $X \subseteq M$, and $m \in M$,

$$
(X)_{m}=\{x \in M:\langle m, x\rangle \in X\} .
$$

- \mathcal{U} is an iterable ultrafilter if for every $X \in \mathcal{B}$, $\left\{m \in M:(X)_{m} \in \mathcal{U}\right\}$ is definable in \mathfrak{M}.
- Theorem (Gaifman). Let \mathfrak{M}^{*} be the \mathbb{Z} iterated ultrapower of \mathfrak{M} modulo an iterable nonprincipal ultrafilter \mathcal{U}. Then for some $j \in \operatorname{Aut}\left(\mathfrak{M}^{*}\right)$

$$
f i x(j)=M
$$

Characterizing PA (3)

- Given a language $\mathcal{L} \supseteq \mathcal{L}_{A}$, an \mathcal{L}-formula φ is said to be a $\Delta_{0}(\mathcal{L})$-formula if all the quantifiers of φ are bounded by terms of \mathcal{L}, i.e., they are of the form $\exists x \leq t$, or of the form $\forall x \leq t$, where t is a term of \mathcal{L} not involving x.
- Bounded arithmetic, or $I \Delta_{0}$, is the fragment of Peano arithmetic with the induction scheme limited to Δ_{0}-formulae.
- I is a strong cut of $\mathfrak{M} \vDash I \Delta_{0}$, if for each function f whose graph is coded in M, and whose domain includes M, there is some s in M, such that for all $i \in I$,

$$
f(i) \notin I \Longleftrightarrow s<f(i)
$$

Characterizing PA (4)

- Theorem (Kirby-Paris). Strong cuts are models of PA.
- Theorem. If $\mathfrak{M} \vDash I \Delta_{0}$ and $j \in \operatorname{Aut}(\mathfrak{M})$ with $f i x(j) \subsetneq e M$, then $f i x(j)$ is a strong cut of \mathfrak{M}.
- Theorem. The following are equivalent for a model $\mathfrak{M} \vDash I \Delta_{0}$:
(a) $\mathfrak{M} \vDash P A$;
(b) There is some $\mathfrak{M}^{*} \supseteq_{e} \mathfrak{M}$ and some $j \in$ Aut $\left(\mathfrak{M}^{*}\right)$ such that $\mathfrak{M}^{*} \vDash I \Delta_{0}$ and fix $(j)=$ M.

Set Theory and Combinatorics within $I \Delta_{0}$ (1)

- Bennett showed that the graph of the exponential function $y=2^{x}$ can be defined by a Δ_{0}-predicate in the standard model of arithmetic. This result was later fine-tuned by Paris who found another Δ_{0}-predicate $\operatorname{Exp}(x, y)$ which has the additional feature that $I \Delta_{0}$ can prove the usual algebraic laws about exponentiation for $\operatorname{Exp}(x, y)$.
- One can use Ackermann coding to simulate finite set theory and combinatorics within $I \Delta_{0}$ by using a Δ_{0}-predicate $E(x, y)$ that expresses "the x-th digit in the binary expansion of y is $1^{\prime \prime}$.
- E in many ways behaves like the membership relation \in; indeed, it is well-known that \mathfrak{M} is a model of $P A$ iff (M, E) is a model of $Z F \backslash\{$ Infinity $\} \cup\{\neg$ Infinity $\}$.

Set Theory and Combinatorics within $I \Delta_{0}$ (2)

- Theorem If $\mathfrak{M} \vDash I \Delta_{0}(\mathcal{L})$, and E is Ackermann's \in, then \mathfrak{M} satisfies the following axioms:
(a) Extensionality;
(b) Conditional Pairing [$\forall x \forall y$ "if $x<y$ and 2^{y} exists, then $\{x, y\}$ exists"]:
(c) Union;
(d) Conditional Power Set $\left[\forall x\right.$ ("If 2^{x} exists, then the power set of x exists")];
(e) Conditional $\Delta_{0}(\mathcal{L})$-Comprehension Scheme: for each formula $\Delta_{0}(\mathcal{L})$-formula $\varphi(x, y)$, and any z for which 2^{z} exists, $\{x E z: \varphi(x, y)\}$ exists.

Set Theory and Combinatorics within $I \Delta_{0}$ (3)

- $c_{E}:=\{m \in M: m E c\}$.
- $X \subseteq M$ is coded in \mathfrak{M}, if for some $c \in M$ such that $X=c_{E}$.
- Given $c \in M, \bar{c}:=\{x \in M: x<c\}$. Note that \bar{c} is coded in a model of $I \Delta_{0}$ provided 2^{c} exists in \mathfrak{M}.
- $\operatorname{SSy}_{I}(\mathfrak{M}):=\left\{c_{E} \cap I: c \in N\right\}$.
- Within $I \Delta_{0}$ one can define a partial function $\operatorname{Card}(x)=t$, expressing "the cardinality of the set coded by x is t ".
- $I \Delta_{0}$ can prove that $\operatorname{Card}(x)$ is defined (and is well-behaved) if 2^{x} exists.

Set Theory and Combinatorics within $I \Delta_{0}$ (4)

- In light of the above discussion, finite combinatorial statements have reasonable arithmetical translations in models of bounded arithmetic provided "enough powers of 2 exist".
- We shall therefore use the Erdős notation $a \rightarrow(b)_{d}^{n}$ for the arithmetical translation of the set theoretical statement:
"if $\operatorname{Card}(X)=a$ and $f:[X]^{n} \rightarrow \bar{d}$, then there is $H \subseteq X$ with $\operatorname{Card}(H)=b$ such that H is f-monochromatic."
- Here $[X]^{n}$ is the collection of increasing n tuples from X (where the order on X is inherited from the ambient model of arithmetic), and H is f-monochromatic iff f is constant on $[H]^{n}$.

Set Theory and Combinatorics within $I \Delta_{0}$ (5)

- We also write $a \rightarrow *(b)^{n}$ for the arithmetical translation of the following canonical partition relation:
if $\operatorname{Card}(X)=a$ and $f:[X]^{n} \rightarrow Y$, then there is $H \subseteq X$ with $\operatorname{Card}(H)=b$ which is f-canonical, i.e., $\exists S \subseteq\{1, \cdots, n\}$ such that for all sequences $s_{1}<\cdots<s_{n}$, and $t_{1}<\cdots<t_{n}$ of elements of H,
$f\left(s_{1}, \cdots, s_{n}\right)=f\left(t_{1}, \cdots, t_{n}\right) \Longleftrightarrow \forall i \in S\left(s_{i}=t_{i}\right)$.
Note that if $S=\emptyset$, then f is constant on $[H]^{n}$, and if $S=\{1, \cdots, n\}$, then f is injective on $[H]^{n}$.
- Superexp $(0, x)=x$, and

$$
\operatorname{Superexp}(n+1, x)=2^{\text {Superexp }(n, x)} .
$$

Set Theory and Combinatorics within $I \Delta_{0}$ (6)

- Theorem. For each $n \in \mathbb{N}^{+}$, the following is provable in $I \Delta_{0}$:
(a) [Ramsey] $a \rightarrow(b)_{c}^{n}$, if $a=\operatorname{Superexp}(2 n, b c)$ and $b \geq n^{2}$;
(b) [Erdős-Rado] $a \rightarrow *(b)^{n}$,
if $a=\operatorname{Superexp}\left(4 n, b \cdot 2^{2^{2 n^{2}-n}}\right)$ and $b \geq 4 n^{2}$.

On $I \Delta_{0}+E x p$

- By a classical theorem of Parikh, $I \Delta_{0}$ can only prove the totality of functions with a polynomial growth rate, hence

$$
I \Delta_{0} \nvdash \forall x \exists y E x p(x, y) .
$$

- $I \Delta_{0}+E x p$ is the extension of $I \Delta_{0}$ obtained by adding the axiom

$$
E x p:=\forall x \exists y \operatorname{Exp}(x, y)
$$

The theory $I \Delta_{0}+E x p$ might not appear to be particularly strong since it cannot even prove the totality of the superexponential function, but experience has shown that it is a remarkably robust theory that is able to prove an extensive array of theorems of number theory and finite combinatorics.

On $B \Sigma_{1}$

- For $\mathcal{L} \supseteq \mathcal{L}_{A}, B \Sigma_{1}(\mathcal{L})$ is the scheme consisting of the universal closure of formulae of the form
$[\forall x<a \exists y \varphi(x, y)] \rightarrow[\exists z \forall x<a \exists y<z \varphi(x, y)]$, where $\varphi(x, y)$ is a $\Delta_{0}(\mathcal{L})$-formula.
- It has been known since the work of Parsons that there are instances of $B \Sigma_{1}$ that are unprovable in $I \Delta_{0}+$ Exp; indeed Parson's work shows that even strengthening $I \Delta_{0}+E x p$ with the set of Π_{2}-sentences that are true in the standard model of arithmetic fails to prove all instances of $B \Sigma_{1}$.
- However, Harvey Friedman and Jeff Paris have shown, independently, that adding $B \Sigma_{1}$ does not increase the Π_{2}-consequences of $I \Delta_{0}+$ Exp .

A Characterization of $I \Delta_{0}+E x p+B \Sigma_{1}$

- $I_{f i x}(j)$ is the largest initial segment of the domain of j that is pointwise fixed by j
- Theorem A. The following two conditions are equivalent for a countable model \mathfrak{M} of the language of arithmetic:
(1) $\mathfrak{M} \vDash I \Delta_{0}+B \Sigma_{1}+E x p$.
(2) $\mathfrak{M}=I_{f i x}(j)$ for some nontrivial automorphism j of an end extension \mathfrak{M}^{*} of \mathfrak{M} that satisfies $I \Delta_{0}$.

Outline of the proof of $I_{f i x}(j) \vDash E x p$

(1) If $a \in I_{f i x}(j)$ and 2^{a} is defined in \mathfrak{M}, then $2^{a} \in I_{f i x}(j)$.

The usual proof of the existence of the base 2 expansion for a positive integer y can be implemented within $I \Delta_{0}$ provided some power of 2 exceeds y. Therefore, for every $y<2^{a}$, there is some element c that codes a subset of $\{0,1, \ldots, a-1\}$ such that $y=\sum_{i E c} 2^{i}$.

The next observation is that $j(c)=c$. This hinges on the fact that E satisfies Extensionality, and that $i E c$ implies $j(i)=i$ (since $a \in$ $I_{f i x}(j)$, and $i E c$ implies that $\left.i<a\right)$.

Outline of the proof of $I_{f i x}(j) \vDash E x p$, Cont'd

$$
j(y)=j\left(\sum_{i E c} 2^{i}\right)=\sum_{i E j(c)} 2^{i}=\sum_{i E c} 2^{i}=y
$$

So every $y<2^{a}$ is fixed by j and therefore $2^{a} \in I_{f i x}(j)$.
(2) $\{m \in M: m$ is a power of 2$\}$ is cofinal in \mathfrak{M}.

Now use (1) and (2) to prove that if $a \in I_{f i x}(j)$, then 2^{a} is defined and is a member of $I_{f i x}(j)$.

Two Key Results

- Theorem (Wilkie-Paris). Every countable model of $I \Delta_{0}+E x p+B \Sigma_{1}$ has an end extension to a model of $I \Delta_{0}+B \Sigma_{1}$.
- \mathcal{F} is the family of all M-valued functions $f\left(x_{1}, \cdots, x_{n}\right)$ on M^{n} (where $n \in \mathbb{N}^{+}$) such that for some Σ_{1}-formula $\delta\left(x_{1}, \cdots, x_{n}, y\right), \delta$ defines the graph of f in \mathfrak{M} and for some term $t\left(x_{1}, \cdots, x_{n}\right), f\left(a_{1}, \cdots, a_{n}\right) \leq t\left(a_{1}, \cdots, a_{n}\right)$ for all $a_{i} \in M$.
- Theorem (Dimitracopoulos-Gaifman). If $\mathfrak{M} \vDash I \Delta_{0}+B \Sigma_{1}$, then the expanded structure

$$
\mathfrak{M}_{\mathcal{F}}:=(\mathfrak{M}, f)_{f \in \mathcal{F}}
$$

satisfies $I \Delta_{0}\left(\mathcal{L}_{\mathcal{F}}\right)+B \Sigma_{1}\left(\mathcal{L}_{\mathcal{F}}\right)$, where $\mathcal{L}_{\mathcal{F}}$ is the result of augmenting the language of arithmetic with names for each $f \in \mathcal{F}$.

(A variant of) Paris-Mills Ultrapowers

- Suppose $\mathfrak{M} \vDash I \Delta_{0}+B \Sigma_{1}, I$ is a cut of \mathfrak{M} that satisfies Exp and $c \in M \backslash I$ such that 2^{c} exists in \mathfrak{M} (such an element c exists by Δ_{0}-OVERSPILL).
- The index set is $\bar{c}=\{0,1, \cdots, c-1\}$.
- \mathcal{F}_{c} is the family of all M-valued functions $f\left(x_{1}, \cdots, x_{n}\right)$ on $[c]^{n}$ (where $n \in \mathbb{N}$) obtained by restricting the domains of n-ary functions in \mathcal{F} to $[c]^{n}\left(n \in \mathbb{N}^{+}\right)$.
- The family of functions used in the formation of the ultrapower is \mathcal{F}_{c}. The relevant Boolean algebra is denoted \mathcal{B}_{c}.

Desirable Ultrafilters (1)

- $\mathcal{U} \subseteq \mathcal{B}_{c}$ is canonically Ramsey if for every $f \in \mathcal{F}_{c}$ with $f:[\bar{c}]^{n} \rightarrow M$, there is some $H \in \mathcal{U}$ such that H is f-canonical;
- \mathcal{U} is I-tight if for every $f \in \mathcal{F}_{c}$ with if f : $[\bar{c}]^{n} \rightarrow M$, then there is some $H \in \mathcal{U}$ such either f is constant on H, or there is some $m_{0} \in M \backslash I$ such that $f(\mathbf{x})>m_{0}$ for all $\mathbf{x} \in$ $[H]^{n}$.
- \mathcal{U} is I-conservative if for every $n \in \mathbb{N}^{+}$and every \mathfrak{M}-coded sequence $\left\langle K_{i}: i\langle c\rangle\right.$ of subsets of $[\bar{c}]^{n}$ there is some $X \in \mathcal{U}$ and some $d \in M$ with $I<d \leq c$ such that $\forall i<d$ X decides K_{i}, i.e., either $[X]^{n} \subseteq K_{i}$ or $[X]^{n} \subseteq[\bar{c}]^{n} \backslash K_{i}$.

Desirable Ultrafilters (2)

- Theorem. \mathcal{B}_{c} carries a nonprincipal ultrafilter \mathcal{U} satisfying the following four properties:
(a) \mathcal{U} is canonically Ramsey;
(b) \mathcal{U} is I-tight;
(c) $\left\{\operatorname{Card}^{\mathfrak{M}}(X): X \in \mathcal{U}\right\}$ is downward cofinal in $M \backslash I$;
(d) \mathcal{U} is I-conservative.

Fundamental Theorem

- Theorem. Suppose I is a cut closed exponentiation in a countable model of $I \Delta_{0}$, \mathbb{L} is a linearly ordered set, and \mathcal{U} satisfies the four properties of the previous theorem. One can use \mathcal{U} to build a an elementeary extension $\mathfrak{M}_{\mathbb{L}}^{*}$ of \mathfrak{M} that satisfies:
(a) $I \subseteq_{e} \mathfrak{M}_{\mathbb{L}}$ and $S S y_{I}\left(\mathfrak{M}_{\mathbb{L}}\right)=S S y_{I}(\mathfrak{M})$.
(b) \mathbb{L} is a set of indiscernible in $\mathfrak{M}_{\mathbb{L}}^{*}$;
(c) Every $j \in \operatorname{Aut}(\mathbb{L})$ induces an automorphism $\widehat{j} \in \operatorname{Aut}\left(\mathfrak{M}_{\mathbb{L}}^{*}\right)$ such that $j \mapsto \widehat{j}$ is a group embedding of $\operatorname{Aut}(\mathbb{L})$ into $\operatorname{Aut}\left(\mathfrak{M}_{\mathbb{L}}^{*}\right)$;
(d) If $j \in \operatorname{Aut}(\mathbb{L})$ is nontrivial, then $I_{f i x}(\hat{j})=I$;
(e) If $j \in \operatorname{Aut}(\mathbb{L})$ is fixed point free, then

$$
f i x(\hat{j})=M .
$$

