Set Theory and Models of Arithmetic

ALI ENAYAT

First European Set Theory Meeting

Bedlewo, July 12, 2007

PA is finite set theory!

- There is an arithmetical formula E(x, y) that expresses "the x-th digit of the base 2 expansion of y is 1".
- Theorem (Ackermann, 1908)
- $(\mathbb{N}, E) \cong (V_{\omega}, \in).$
- $\mathfrak{M} \models PA$ iff (M, E) is a model of $ZF^{-\infty}$.

Three Questions

- Question 1. Is every Scott set the standard system of some model of PA?
- Question 2. Does every expansion of ℕ have a conservative elementary extension?
- **Question 3.** Does every nonstandard model of *PA* have a minimal cofinal elementary extension?
- Source: R. Kossak and J. Schmerl, The Structure of Models of Peano Arithmetic, Oxford University Press, 2006.

Scott Sets and Standard Systems (1)

- Suppose $\mathcal{A} \subseteq \mathcal{P}(\omega)$. \mathcal{A} is a Scott set iff $(\mathbb{N}, \mathcal{A}) \models WKL_0$, equivalently:
- \mathcal{A} is a Scott set iff:
 - (1) \mathcal{A} is a Boolean algebra;
 - (2) \mathcal{A} is closed under Turing reducibility;

(3) If an infinite subset τ of $2^{<\omega}$ is coded in \mathcal{A} , then an infinite branch of τ is coded in \mathcal{A} .

• Suppose $\mathfrak{M} \models PA$.

 $SSy(\mathfrak{M}) := \{c_E \cap \omega : c \in M\}, \text{ where }$

 $c_E := \{ x \in M : \mathfrak{M} \models xEc \}.$

Scott Sets and Standard Systems (2)

• Theorem (Scott 1961).

(a) $SSy(\mathfrak{M})$ is a Scott set.

(b) All countable Scott sets can be realized as $SSy(\mathfrak{M})$, for some $\mathfrak{M} \models PA$.

- Theorem (Knight-Nadel, 1982). All Scott sets of cardinality at most ℵ₁ can be real-ized as SSy(𝔐), for some 𝔐 ⊨ PA.
- Corollary. CH settles Question 1.

McDowell-Specker-Gaifman

- $\mathfrak{M} \prec_{cons} \mathfrak{N}$, if for every parametrically definable subset X of N, $X \cap M$ is also parametrically definable.
- For models of PA, $\mathfrak{M} \prec_{cons} \mathfrak{N} \Rightarrow \mathfrak{M} \prec_{end} \mathfrak{N}$.
- Theorem (Gaifman, 1976). For countable *L*, every model *M* of *PA*(*L*) has a conser-vative elementary extension.

Proof of MSG

- The desired model is a Skolem ultrapower of \mathfrak{M} modulo an appropriately chosen ultrafilter.
- U is complete if every definable map with bounded range is constant on a member of U.
- For each definable $X \subseteq M$, and $m \in M$, $(X)_m = \{x \in M : \langle m, x \rangle \in X\}.$
- \mathcal{U} is an *iterable* ultrafilter if for every definable $X \in \mathcal{B}$, $\{m \in M : (X)_m \in \mathcal{U}\}$ is definable.
- There is a complete iterable ultrafilter \mathcal{U} over the definable subsets of M.

- In 1978 Mills used a novel forcing construction to construct a countable model M of PA(L) which has no elementary end extension.
- Starting with any countable nonstandard model M of PA and an infinite element a ∈ M, Mills' forcing produces an uncountable family F of functions from M into {m ∈ M : m < a} such that

(1) the expansion $(\mathfrak{M}, f)_{f \in \mathcal{F}}$ satisfies PA in the extended language employing a name for each $f \in \mathcal{F}$, and

(2) for any distinct f and g in \mathcal{F} , there is some $b \in M$ such that $f(x) \neq g(x)$ for all $x \geq b$. On Question 2

• For
$$\mathcal{A} \subseteq \mathcal{P}(\omega)$$
,

$$\Omega_{\mathcal{A}} := (\omega, +, \cdot, X)_{X \in \mathcal{A}}.$$

- Question 2 (Blass/Mills) Does Ω_A have a conservative elementary extension for every A ⊆ P(ω)?
- **Reformulation:** Does $\Omega_{\mathcal{A}}$ carry an iterable ultrafilter for every $\mathcal{A} \subseteq \mathcal{P}(\omega)$?

Negative Answer to Question 2

- Theorem A (E, 2006) There is $\mathcal{A} \subseteq \mathcal{P}(\omega)$ of power \aleph_1 such that $\Omega_{\mathcal{A}}$ does not carry an iterable ultrafilter.
- Let P_A denote the quotient Boolean algebra A/FIN, where FIN is the ideal of finite subsets of ω.
- Theorem B (E, 2006) There is an arithmetically closed A ⊆ P(ω) of power ℵ₁ such that forcing with P_A collapses ℵ₁.

- Start with a countable ω-model (N, A₀) of second order arithmetic (Z₂) plus the choice scheme (AC) such that no nonprincipal ultrafilter on A is definable in (N, A₀).
- Use \diamondsuit_{\aleph_1} to elementary extend $(\mathbb{N}, \mathcal{A}_0)$ to $(\mathbb{N}, \mathcal{A})$ such that the only "piecewise coded" subsets S of \mathcal{A} are those that are definable in $(\mathbb{N}, \mathcal{A})$.

Here $S \subseteq \mathcal{P}(\omega)$ is *piecewise coded in* \mathcal{A} if for every $X \in \mathcal{A}$ there is some $Y \in \mathcal{A}$ such that

$$\{n \in \omega : (X)_n \in \mathcal{S}\} = Y,$$

where $(X)_n$ is the *n*-th real coded by the real X.

Proof of Theorem A, Cont'd

- The proof uses an omitting types argument, and takes advantage of a canonical correspondence between models of Z_2 + AC, and models of ZFC^- + "all sets are finite or countable". This yields a proof of Theorem A within $ZFC + \diamondsuit_{\aleph_1}$.
- An absoluteness theorem of Shelah can be employed to establish Theorem A within ZFC alone.

Shelah's Completeness Theorem

Theorem (Shelah, 1978). Suppose \mathcal{L} is a countable language, and t is a sequence of \mathcal{L} -formulae that defines a ranked tree in some \mathcal{L} -model. Given any sentence ψ of $\mathcal{L}_{\omega_1,\omega}(Q)$, where Q is the quantifier "there exists uncountably many", there is a countable expansion $\overline{\mathcal{L}}$ of \mathcal{L} , and a sentence $\overline{\psi} \in \overline{\mathcal{L}}_{\omega_1,\omega}(Q)$ such that the following two conditions are equivalent:

(1) $\overline{\psi}$ has a model.

(2) ψ has a model \mathfrak{A} of power \aleph_1 which has the property that $t^{\mathfrak{A}}$ is a ranked tree of cofinality \aleph_1 and every branch of $t^{\mathfrak{A}}$ is definable in \mathfrak{A} .

Consequently, by Keisler's completeness theorem for $\mathcal{L}^*_{\omega_1,\omega}(Q)$, (2) is an absolute statement. • **Theorem** (Gitman, 2006). (Within *ZFC*+ *PFA*)

Suppose $\mathcal{A} \subseteq \mathcal{P}(\omega)$ is arithmetically closed and $\mathbb{P}_{\mathcal{A}}$ is proper. Then \mathcal{A} is the standard system of some model of PA.

• **Question** (Gitman-Hamkins).

Is there an arithmetically closed \mathcal{A} such that $\mathbb{P}_{\mathcal{A}}$ is not proper?

• Theorem B shows that the answer to the above is positive.

Open Questions (1)

Question I. Is there $\mathcal{A} \subseteq \mathcal{P}(\omega)$ such that some model of $Th(\Omega_{\mathcal{A}})$ has no elementary end extension?

Question II. Suppose $\mathcal{A} \subseteq \mathcal{P}(\omega)$ and \mathcal{A} is Borel.

(a) Does $\Omega_{\mathcal{A}}$ have a conservative elementary extension?

(b) Suppose, furthermore, that \mathcal{A} is arithmetically closed. Is $\mathbb{P}_{\mathcal{A}}$ a proper poset?

Open Questions (2)

Suppose \mathcal{U} is an ultrafilter on $\mathcal{A} \subseteq \mathcal{P}(\omega)$ with $n \in \omega, n \ge 1$.

- \mathcal{U} is (\mathcal{A}, n) -Ramsey, if for every $f : [\omega]^n \to \{0, 1\}$ whose graph is coded in \mathcal{A} , there is some $X \in \mathcal{U}$ such that $f \upharpoonright [X]^n$ is constant.
- \mathcal{U} is \mathcal{A} -Ramsey if \mathcal{U} is (\mathcal{A}, n) -Ramsey for all nonzero $n \in \omega$.
- \mathcal{U} is \mathcal{A} -minimal iff for every $f : \omega \to \omega$ whose graph is coded in \mathcal{A} , there is some $X \in \mathcal{U}$ such that $f \upharpoonright X$ is either constant or injective.

Open Questions (3)

Theorem. Suppose \mathcal{U} is an ultrafilter on an arithmetically closed $\mathcal{A} \subseteq \mathcal{P}(\omega)$.

(a) If \mathcal{U} is $(\mathcal{A}, 2)$ -Ramsey, then \mathcal{U} is piecewise coded in \mathcal{A} .

(b) If \mathcal{U} is both piecewise coded in \mathcal{A} and \mathcal{A} -minimal, then \mathcal{U} is \mathcal{A} -Ramsey.

(c) If \mathcal{U} is $(\mathcal{A}, 2)$ -Ramsey, then \mathcal{U} is \mathcal{A} -Ramsey.

(d) For $\mathcal{A} = \mathcal{P}(\omega)$, the existence of an \mathcal{A} -minimal ultrafilter is both consistent and independent of ZFC.

Question III. Can it be proved in ZFC that there exists an arithmetically closed $\mathcal{A} \subseteq \mathcal{P}(\omega)$ such that \mathcal{A} carries no \mathcal{A} -minimal ultrafilter?