Set Theory and Models of Arithmetic

ALI ENAYAT

First European Set Theory Meeting

Bedlewo, July 12, 2007

PA is finite set theory!

- There is an arithmetical formula $E(x, y)$ that expresses "the x-th digit of the base 2 expansion of y is 1 ".
- Theorem (Ackermann, 1908)
- $(\mathbb{N}, E) \cong\left(V_{\omega}, \in\right)$.
- $\mathfrak{M}=P A$ iff (M, E) is a model of $Z F^{-\infty}$.

Three Questions

- Question 1. Is every Scott set the standard system of some model of $P A$?
- Question 2. Does every expansion of \mathbb{N} have a conservative elementary extension?
- Question 3. Does every nonstandard model of $P A$ have a minimal cofinal elementary extension?
- Source: R. Kossak and J. Schmerl, The Structure of Models of Peano Arithmetic, Oxford University Press, 2006.

Scott Sets and Standard Systems (1)

- Suppose $\mathcal{A} \subseteq \mathcal{P}(\omega)$. \mathcal{A} is a Scott set iff $(\mathbb{N}, \mathcal{A})=W K L_{0}$, equivalently:
- \mathcal{A} is a Scott set iff:
(1) \mathcal{A} is a Boolean algebra;
(2) \mathcal{A} is closed under Turing reducibility;
(3) If an infinite subset τ of $2^{<\omega}$ is coded in \mathcal{A}, then an infinite branch of τ is coded in \mathcal{A}.
- Suppose $\mathfrak{M} \vDash P A$.

$$
\begin{aligned}
S S y(\mathfrak{M}) & :=\left\{c_{E} \cap \omega: c \in M\right\}, \text { where } \\
c_{E} & :=\{x \in M: \mathfrak{M} \models x E c\} .
\end{aligned}
$$

Scott Sets and Standard Systems (2)

- Theorem (Scott 1961).
(a) $\operatorname{SSy}(\mathfrak{M})$ is a Scott set.
(b) All countable Scott sets can be realized as $\operatorname{SSy}(\mathfrak{M})$, for some $\mathfrak{M} \vDash P A$.
- Theorem (Knight-Nadel, 1982). All Scott sets of cardinality at most \aleph_{1} can be realized as $\operatorname{SSy}(\mathfrak{M})$, for some $\mathfrak{M} \models P A$.
- Corollary. CH settles Question 1.

McDowell-Specker-Gaifman

- $\mathfrak{M} \prec$ cons \mathfrak{N}, if for every parametrically definable subset X of $N, X \cap M$ is also parametrically definable.
- For models of $P A, \mathfrak{M} \prec_{\text {cons }} \mathfrak{N} \Rightarrow \mathfrak{M} \prec_{\text {end }} \mathfrak{N}$.
- Theorem (Gaifman, 1976). For countable \mathcal{L}, every model \mathfrak{M} of $P A(\mathcal{L})$ has a conservative elementary extension.

Proof of MSG

- The desired model is a Skolem ultrapower of \mathfrak{M} modulo an appropriately chosen ultrafilter.
- \mathcal{U} is complete if every definable map with bounded range is constant on a member of \mathcal{U}.
- For each definable $X \subseteq M$, and $m \in M$, $(X)_{m}=\{x \in M:\langle m, x\rangle \in X\}$.
- \mathcal{U} is an iterable ultrafilter if for every definable $X \in \mathcal{B},\left\{m \in M:(X)_{m} \in \mathcal{U}\right\}$ is definable.
- There is a complete iterable ultrafilter \mathcal{U} over the definable subsets of M.

Mills' Counterexample

- In 1978 Mills used a novel forcing construction to construct a countable model \mathfrak{M} of $P A(\mathcal{L})$ which has no elementary end extension.
- Starting with any countable nonstandard model \mathfrak{M} of $P A$ and an infinite element $a \in$ M, Mills' forcing produces an uncountable family \mathcal{F} of functions from M into $\{m \in$ $M: m<a\}$ such that
(1) the expansion $(\mathfrak{M}, f)_{f \in \mathcal{F}}$ satisfies $P A$ in the extended language employing a name for each $f \in \mathcal{F}$, and
(2) for any distinct f and g in \mathcal{F}, there is some $b \in M$ such that $f(x) \neq g(x)$ for all $x \geq b$.

On Question 2

- For $\mathcal{A} \subseteq \mathcal{P}(\omega)$,

$$
\Omega_{\mathcal{A}}:=(\omega,+, \cdot, X)_{X \in \mathcal{A}} .
$$

- Question 2 (Blass/Mills) Does $\Omega_{\mathcal{A}}$ have a conservative elementary extension for every $\mathcal{A} \subseteq \mathcal{P}(\omega)$?
- Reformulation: Does $\Omega_{\mathcal{A}}$ carry an iterable ultrafilter for every $\mathcal{A} \subseteq \mathcal{P}(\omega)$?

Negative Answer to Question 2

- Theorem $\mathbf{A}(\mathrm{E}, 2006)$ There is $\mathcal{A} \subseteq \mathcal{P}(\omega)$ of power \aleph_{1} such that $\Omega_{\mathcal{A}}$ does not carry an iterable ultrafilter.
- Let $\mathbb{P}_{\mathcal{A}}$ denote the quotient Boolean algebra $\mathcal{A} / F I N$, where $F I N$ is the ideal of finite subsets of ω.
- Theorem B (E, 2006) There is an arithmetically closed $\mathcal{A} \subseteq \mathcal{P}(\omega)$ of power \aleph_{1} such that forcing with $\mathbb{P}_{\mathcal{A}}$ collapses \aleph_{1}.

Proof of Theorem A

- Start with a countable ω-model ($\mathbb{N}, \mathcal{A}_{0}$) of second order arithmetic (Z_{2}) plus the choice scheme ($A C$) such that no nonprincipal ultrafilter on \mathcal{A} is definable in ($\mathbb{N}, \mathcal{A}_{0}$).
- Use $\diamond_{N_{1}}$ to elementary extend ($\mathbb{N}, \mathcal{A}_{0}$) to $(\mathbb{N}, \mathcal{A})$ such that the only "piecewise coded" subsets \mathcal{S} of \mathcal{A} are those that are definable in $(\mathbb{N}, \mathcal{A})$.

Here $\mathcal{S} \subseteq \mathcal{P}(\omega)$ is piecewise coded in \mathcal{A} if for every $X \in \mathcal{A}$ there is some $Y \in \mathcal{A}$ such that

$$
\left\{n \in \omega:(X)_{n} \in \mathcal{S}\right\}=Y
$$

where $(X)_{n}$ is the n-th real coded by the real X.

Proof of Theorem A, Cont'd

- The proof uses an omitting types argument, and takes advantage of a canonical correspondence between models of $Z_{2}+$ $A C$, and models of $Z F C^{-}+$"all sets are finite or countable" . This yields a proof of Theorem A within $Z F C+\diamond_{\aleph_{1}}$.
- An absoluteness theorem of Shelah can be employed to establish Theorem A within $Z F C$ alone.

Shelah's Completeness Theorem

Theorem (Shelah, 1978). Suppose \mathcal{L} is a countable language, and t is a sequence of \mathcal{L} formulae that defines a ranked tree in some \mathcal{L}-model. Given any sentence ψ of $\mathcal{L}_{\omega_{1}, \omega}(Q)$, where Q is the quantifier "there exists uncountably many", there is a countable expansion $\overline{\mathcal{L}}$ of \mathcal{L}, and a sentence $\bar{\psi} \in \overline{\mathcal{L}}_{\omega_{1}, \omega}(Q)$ such that the following two conditions are equivalent:
(1) $\bar{\psi}$ has a model.
(2) ψ has a model \mathfrak{A} of power \aleph_{1} which has the property that $\mathrm{t}^{\mathfrak{A}}$ is a ranked tree of cofinality \aleph_{1} and every branch of $\mathbf{t}^{\mathfrak{A}}$ is definable in \mathfrak{A}.

Consequently, by Keisler's completeness theorem for $\mathcal{L}_{\omega_{1}, \omega}^{*}(Q),(2)$ is an absolute statement.

Motivation for Theorem B

- Theorem (Gitman, 2006). (Within ZFC+ PFA)

Suppose $\mathcal{A} \subseteq \mathcal{P}(\omega)$ is arithmetically closed and $\mathbb{P}_{\mathcal{A}}$ is proper. Then \mathcal{A} is the standard system of some model of PA.

- Question (Gitman-Hamkins).

Is there an arithmetically closed \mathcal{A} such that $\mathbb{P}_{\mathcal{A}}$ is not proper?

- Theorem B shows that the answer to the above is positive.

Open Questions (1)

Question I. Is there $\mathcal{A} \subseteq \mathcal{P}(\omega)$ such that some model of $\operatorname{Th}\left(\Omega_{\mathcal{A}}\right)$ has no elementary end extension?

Question II. Suppose $\mathcal{A} \subseteq \mathcal{P}(\omega)$ and \mathcal{A} is Borel.
(a) Does $\Omega_{\mathcal{A}}$ have a conservative elementary extension?
(b) Suppose, furthermore, that \mathcal{A} is arithmetically closed. Is $\mathbb{P}_{\mathcal{A}}$ a proper poset?

Open Questions (2)

Suppose \mathcal{U} is an ultrafilter on $\mathcal{A} \subseteq \mathcal{P}(\omega)$ with $n \in \omega, n \geq 1$.

- \mathcal{U} is (\mathcal{A}, n)-Ramsey, if for every $f:[\omega]^{n} \rightarrow$ $\{0,1\}$ whose graph is coded in \mathcal{A}, there is some $X \in \mathcal{U}$ such that $f \upharpoonright[X]^{n}$ is constant.
- \mathcal{U} is \mathcal{A}-Ramsey if \mathcal{U} is (\mathcal{A}, n)-Ramsey for all nonzero $n \in \omega$.
- \mathcal{U} is \mathcal{A}-minimal iff for every $f: \omega \rightarrow \omega$ whose graph is coded in \mathcal{A}, there is some $X \in$ \mathcal{U} such that $f \upharpoonright X$ is either constant or injective.

Open Questions (3)

Theorem . Suppose \mathcal{U} is an ultrafilter on an arithmetically closed $\mathcal{A} \subseteq \mathcal{P}(\omega)$.
(a) If \mathcal{U} is $(\mathcal{A}, 2)$-Ramsey, then \mathcal{U} is piecewise coded in \mathcal{A}.
(b) If \mathcal{U} is both piecewise coded in \mathcal{A} and \mathcal{A} minimal, then \mathcal{U} is \mathcal{A}-Ramsey.
(c) If \mathcal{U} is ($\mathcal{A}, 2)$-Ramsey, then \mathcal{U} is \mathcal{A}-Ramsey.
(d) For $\mathcal{A}=\mathcal{P}(\omega)$, the existence of an \mathcal{A} minimal ultrafilter is both consistent and independent of ZFC.

Question III. Can it be proved in $Z F C$ that there exists an arithmetically closed $\mathcal{A} \subseteq \mathcal{P}(\omega)$ such that \mathcal{A} carries no \mathcal{A}-minimal ultrafilter?

