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PA is finite set theory!

• There is an arithmetical formula E(x, y)

that expresses “the x-th digit of the base

2 expansion of y is 1”.

• Theorem (Ackermann, 1908)

• (N, E) ∼= (Vω,∈).

• M |= PA iff (M, E) is a model of ZF−∞.



Three Questions

• Question 1. Is every Scott set the stan-

dard system of some model of PA?

• Question 2. Does every expansion of N
have a conservative elementary extension?

• Question 3. Does every nonstandard model

of PA have a minimal cofinal elementary

extension?

• Source: R. Kossak and J. Schmerl, The

Structure of Models of Peano Arith-

metic, Oxford University Press, 2006.



Scott Sets and Standard Systems (1)

• Suppose A ⊆ P(ω). A is a Scott set iff

(N,A) |= WKL0, equivalently:

• A is a Scott set iff:

(1) A is a Boolean algebra;

(2) A is closed under Turing reducibility;

(3) If an infinite subset τ of 2<ω is coded

in A, then an infinite branch of τ is coded

in A.

• Suppose M |= PA.

SSy(M) := {cE ∩ ω : c ∈ M}, where

cE := {x ∈ M : M |= xEc}.



Scott Sets and Standard Systems (2)

• Theorem (Scott 1961).

(a) SSy(M) is a Scott set.

(b) All countable Scott sets can be realized

as SSy(M), for some M |= PA.

• Theorem (Knight-Nadel, 1982). All Scott

sets of cardinality at most ℵ1 can be real-

ized as SSy(M), for some M |= PA.

• Corollary. CH settles Question 1.



McDowell-Specker-Gaifman

• M ≺cons N, if for every parametrically de-

finable subset X of N , X ∩M is also para-

metrically definable.

• For models of PA, M ≺cons N ⇒ M ≺end N.

• Theorem (Gaifman, 1976). For countable

L, every model M of PA(L) has a conser-

vative elementary extension.



Proof of MSG

• The desired model is a Skolem ultrapower

of M modulo an appropriately chosen ul-

trafilter.

• U is complete if every definable map with

bounded range is constant on a member of

U.

• For each definable X ⊆ M, and m ∈ M,

(X)m = {x ∈ M : 〈m, x〉 ∈ X}.

• U is an iterable ultrafilter if for every de-

finable X ∈ B, {m ∈ M : (X)m ∈ U} is

definable.

• There is a complete iterable ultrafilter U
over the definable subsets of M .



Mills’ Counterexample

• In 1978 Mills used a novel forcing construc-

tion to construct a countable model M of

PA(L) which has no elementary end exten-

sion.

• Starting with any countable nonstandard

model M of PA and an infinite element a ∈
M , Mills’ forcing produces an uncountable

family F of functions from M into {m ∈
M : m < a} such that

(1) the expansion (M, f)f∈F satisfies PA in

the extended language employing a name

for each f ∈ F, and

(2) for any distinct f and g in F , there is

some b ∈ M such that f(x) 6= g(x) for all

x ≥ b.



On Question 2

• For A ⊆ P(ω),

ΩA := (ω,+, ·, X)X∈A.

• Question 2 (Blass/Mills) Does ΩA have a

conservative elementary extension for ev-

ery A ⊆ P(ω)?

• Reformulation: Does ΩA carry an iterable

ultrafilter for every A ⊆ P(ω)?



Negative Answer to Question 2

• Theorem A (E, 2006) There is A ⊆ P(ω)

of power ℵ1 such that ΩA does not carry

an iterable ultrafilter.

• Let PA denote the quotient Boolean alge-

bra A/FIN , where FIN is the ideal of finite

subsets of ω.

• Theorem B (E, 2006) There is an arith-

metically closed A ⊆ P(ω) of power ℵ1

such that forcing with PA collapses ℵ1.



Proof of Theorem A

• Start with a countable ω-model (N,A0) of

second order arithmetic (Z2) plus the choice

scheme (AC) such that no nonprincipal ul-

trafilter on A is definable in (N,A0).

• Use ♦ℵ1
to elementary extend (N,A0) to

(N,A) such that the only “piecewise coded”

subsets S of A are those that are definable

in (N,A).

Here S ⊆ P(ω) is piecewise coded in A if for

every X ∈ A there is some Y ∈ A such that

{n ∈ ω : (X)n ∈ S} = Y,

where (X)n is the n-th real coded by the real

X.



Proof of Theorem A, Cont’d

• The proof uses an omitting types argu-

ment, and takes advantage of a canonical

correspondence between models of Z2 +

AC, and models of ZFC− + “all sets are

finite or countable” . This yields a proof

of Theorem A within ZFC +♦ℵ1
.

• An absoluteness theorem of Shelah can be

employed to establish Theorem A within

ZFC alone.



Shelah’s Completeness Theorem

Theorem (Shelah, 1978). Suppose L is a

countable language, and t is a sequence of L-

formulae that defines a ranked tree in some

L-model. Given any sentence ψ of Lω1,ω(Q),

where Q is the quantifier “there exists un-

countably many”, there is a countable expan-

sion L of L, and a sentence ψ ∈ Lω1,ω(Q) such

that the following two conditions are equiva-

lent:

(1) ψ has a model.

(2) ψ has a model A of power ℵ1 which has the

property that tA is a ranked tree of cofinality

ℵ1 and every branch of tA is definable in A.

Consequently, by Keisler’s completeness theo-

rem for L∗ω1,ω(Q), (2) is an absolute statement.



Motivation for Theorem B

• Theorem (Gitman, 2006). (Within ZFC+

PFA)

Suppose A ⊆ P(ω) is arithmetically closed

and PA is proper. Then A is the standard

system of some model of PA.

• Question (Gitman-Hamkins).

Is there an arithmetically closed A such

that PA is not proper?

• Theorem B shows that the answer to the

above is positive.



Open Questions (1)

Question I. Is there A ⊆ P(ω) such that some

model of Th(ΩA) has no elementary end ex-

tension?

Question II. Suppose A ⊆ P(ω) and A is

Borel.

(a) Does ΩA have a conservative elementary

extension?

(b) Suppose, furthermore, that A is arithmeti-

cally closed. Is PA a proper poset?



Open Questions (2)

Suppose U is an ultrafilter on A ⊆ P(ω) with

n ∈ ω, n ≥ 1.

• U is (A, n)-Ramsey, if for every f : [ω]n →
{0,1} whose graph is coded in A, there is

some X ∈ U such that f ¹ [X]n is constant.

• U is A-Ramsey if U is (A, n)-Ramsey for

all nonzero n ∈ ω.

• U is A-minimal iff for every f : ω → ω whose

graph is coded in A, there is some X ∈
U such that f ¹ X is either constant or

injective.



Open Questions (3)

Theorem . Suppose U is an ultrafilter on an

arithmetically closed A ⊆ P(ω).

(a) If U is (A,2)-Ramsey, then U is piecewise

coded in A.

(b) If U is both piecewise coded in A and A-

minimal, then U is A-Ramsey.

(c) If U is (A,2)-Ramsey, then U is A-Ramsey.

(d) For A = P(ω), the existence of an A-

minimal ultrafilter is both consistent and in-

dependent of ZFC.

Question III. Can it be proved in ZFC that

there exists an arithmetically closed A ⊆ P(ω)

such that A carries no A-minimal ultrafilter?


