FROM

FRAGMENTS OF ARITHMETIC TO

LARGE CARDINALS

VIA

QUINE-JENSEN SET THEORY

ALI ENAYAT

MATHEMATICAL LOGIC COLLOQUIUM (UTRECHT)

MAY 4, 2007

Russell's $\{x: x \notin \mathrm{x}\}$ (1901)

- Russell's (Ramified)Type Theory RTT (1908)
- Ramsey's (Simple) Types Theory TT (1925)
- Quine's New Foundations NF (1937)
- Wright's NeoFregean Arithmetic FA (1983)
- The language of $N F$ is $\{=, \in\}$.
- The logic of $N F$ is classical first order logic.
- The axioms of $N F$ are:
(1) Extensionality:

$$
\forall z(z \in x \leftrightarrow z \in y) \rightarrow x=y .
$$

(2) Stratified Comprehension:

For each stratifiable $\varphi(x)$,

$$
\begin{gathered}
"\{x: \varphi(x)\} \text { exists" , i.e., } \\
\exists z \forall t(t \in z \leftrightarrow \varphi(t)) .
\end{gathered}
$$

- φ is stratified if there is an integer valued function f whose domain is the set of all variables occurring in φ, which satisfies the following two requirements:
(1) $f(v)+1=f(w)$, whenever $(v \in w)$ is a subformula of φ;
(2) $f(v)=f(w)$, whenever $(v=w)$ is a subformula of φ.
- The formula $x=x$ is stratifiable, so there is a universal set V in $N F$.
- $N F$ proves that V is a Boolean algebra.
- Cardinals and ordinals are defined in $N F$ in the spirit of Russell and Whitehead, define $\operatorname{card}(X)$ as:
$\{Y$: there is a bijection from X to $Y\}$.
- Card $:=\{\lambda: \exists X(\lambda=\operatorname{card}(X)\}$ exists in $N F$.
- Similarly, the set of all ordinals Ord exists in $N F$.
- What about Cantor's theorem

$$
\operatorname{card}(\mathcal{P}(X))>\operatorname{card}(X)
$$

applied to V itself?

- In the proof of Cantor's Theorem, given $f: X \rightarrow \mathcal{P}(X)$, one needs the set

$$
\{x \in X: \neg(x \in f(x))\},
$$

whose defining equation is not stratifiable, and therefore unavailable!

- $U S C(X)=\{\{x\}: x \in X\}$ exists, and in the $N F$ context, Cantor's theorem is reformulated as:

$$
\operatorname{card}(\mathcal{P}(X))>\operatorname{card}(U S C(X))
$$

- For a cardinal λ, let $T(\lambda):=\operatorname{card}(U S C(X))$, where X is some (any) element of λ, and define (in the metatheory)

$$
\begin{aligned}
\kappa_{0} & :=\operatorname{card}(V) ; \\
\kappa_{n+1} & :=T\left(\kappa_{n}\right) .
\end{aligned}
$$

$N F$ proves:

$$
\kappa_{0}>\kappa_{1}>\cdots>\kappa_{n}>\cdots
$$

- X is Cantorian if $\operatorname{card}(X)=\operatorname{card}(U S C(X))$.
- X is strongly Cantorian if $\{\langle x,\{x\}\rangle: x \in X\}$ exists.
- Rosser's AxCount (Axiom of Counting):
\mathbb{N} is strongly Cantorian.
- $\mathbb{N}:=\{\operatorname{card}(X): \operatorname{fin}(X)\}$.
- $\operatorname{fin}(X)$ says
"there is no injection from X into a proper subset of $X^{\prime \prime}$.
- $N F$ proves the equivalence of $A x$ Count with "all finite sets are Cantorian".
- Theorem (Orey, 1964).

$$
N F+A \times \text { Count } \vdash \operatorname{Con}(N F) .
$$

- Corollary. Con $(N F) \Longrightarrow \operatorname{Con}(N F+\neg A x$ Count $)$.
- Theorem (Hailperin, 1944). NF is finitely axiomatizable, and $N F=N F_{6}$.
- Theorem (Grishin, 1969). $\quad N F=N F_{4}$, and $\operatorname{Con}\left(\mathrm{NF}_{3}\right)$.
- Theorem (Boffa, 1977).

$$
\operatorname{Con}(N F) \Rightarrow N F \neq N F_{3} .
$$

- Theorem (Boffa, 1988; Kaye-Forster 1991). $N F$ is consistent iff there is a model M of a weak fragment ($K F$) of Zermelo set theory that possess an automorphism j such that for some $m \in M, M$ believes

$$
|j(m)|=|\mathcal{P}(m)| .
$$

- Theorem (Specker, 1960).

$\operatorname{Con}(N F) \Longleftrightarrow \operatorname{Con}(T T+$ Ambiguity $)$.

- $T T$ is formulated within multisorted first order logic with countably many sorts

$$
X_{0}, X_{1}, \cdots
$$

- The language of $T T$ is

$$
\left\{\in_{0}, \epsilon_{1}, \cdots\right\} \cup\left\{=0,={ }_{1}, \cdots\right\}
$$

- The atomic formulas are of the form

$$
x^{n}=y^{n}, \text { and } x^{n} \in_{n} y^{n+1} .
$$

- The axioms of $T T$ consist of:

Extensionality:

$$
\begin{gathered}
\left(\left(\forall z^{n}\left(\left(z^{n} \in_{n} x^{n+1} \leftrightarrow z^{n} \in_{n} y^{n+1}\right)\right) \rightarrow\right.\right. \\
x^{n+1}=y^{n+1}
\end{gathered}
$$

and

Comprehension:

$$
\exists z^{n+1}\left(\forall y^{n}\left(y^{n} \in_{n} z^{n+1} \leftrightarrow \varphi\left(x^{n}\right)\right) .\right.
$$

- The ambiguity scheme consists of sentences of the form $\varphi \longleftrightarrow \varphi^{+}$, where φ^{+}is the result of "bumping all types by 1 " in φ.
- Quine-Jensen set theory NFU: relax extensionality to allow urelements.
- MacLane set theory Mac: Zermelo set theory with Comprehension restricted to $\Delta_{0^{-}}$ formulas.
- $N F U^{+}:=N F U+$ infinity + choice.
- $N F U^{-}:=N F U+" V$ is finite" + choice.
- Theorem (Jensen, 1968). Let $N F U^{+}:=$ $N F U+$ Infinity + Choice.
(1) Con $\left(\mathrm{NFU}^{+}\right) \Longleftrightarrow$ Con (Mac).
(2) Con $(P A) \Rightarrow \operatorname{Con}\left(N F U^{-}\right)$.
(3) If $Z F$ has an ω-standard model, then NFU has an ω-standard model.

Boffa's simplification of Jensen's proof

 (1988)- Arrange a model $\mathfrak{M}:=(M, E)$ of Mac, and an automorphism j of M such that
(a) For some infinite $\alpha \in M, j(\alpha)<\alpha$, and (b) V_{κ} exists in M;
- Define $E_{n e w}$ on $V_{\alpha}^{\mathfrak{M}}$ by: $x E_{\text {new }} y$ iff

$$
x E_{\text {new }} y \text { iff } j(x) E y \text { and } \mathfrak{M} \vDash y \in V_{j(\alpha)+1} .
$$

- Theorem (Jensen-Boffa-Hinion). $N F U^{+}$ has a model iff there is a model \mathfrak{M} of Mac that has an automorphism j such that for some infinite ordinal α of \mathfrak{M},

$$
\left(2^{|\alpha|}\right)^{\mathfrak{M}} \leq j(\alpha) .
$$

Solovay's Work (2002, unpublished)

- $\left(I \Delta_{0}+\right.$ Superexp $) \vdash$
$\operatorname{Con}\left(N F U^{-}\right) \Longleftrightarrow \operatorname{Con}\left(I \Delta_{0}+E x p\right)$.
- $\left(I \Delta_{0}+E x p\right)+\operatorname{Con}\left(I \Delta_{0}+E x p\right) \nvdash$

$$
\operatorname{Con}\left(\left(N F U^{-}\right) .\right.
$$

Modulo Jensen's work, in order to arrange a model of ($N F U+$ " V is finite") it suffices to build a model M of ($I \Delta_{0}+$ Exp $)$ with a nontrivial automorphism j such that for some $m \in M$,

$$
2^{m} \leq j(m) .
$$

- $N F U A^{-}:=N F U^{-}+$"every Cantorian set is strongly Cantorian".
- $V A:=I \Delta_{0}+{ }^{\text {" }} \mathrm{j}$ is a nontrivial automorphism whose fixed point set is downward closed".
- Theorem. VA can be (faithfully) interpreted in NFU $A^{-\infty}$.
- Theorem. $\operatorname{Con}(P A) \Longleftrightarrow \operatorname{Con}(N F U A)$.
(1) (Solovay) $\operatorname{Con}(P A) \Rightarrow$ Con $(N F U A)$.
(2) (E) $\operatorname{Con}(N F U A) \Rightarrow \operatorname{Con}(P A)$.
(3) (E) $A C A_{0}$ is (faithfully) interpretable into $V A$. Therefore (1) cannot be established within $I \Delta_{0}+$ Exp.
- Theorem (E, 2006). The following two conditions are equivalent for any model \mathfrak{M} of the language of arithmetic:
(a) \mathfrak{M} satisfies $P A$
(b) $\mathfrak{M}=f i x(j)$ for some nontrivial automorphism j of an end extension \mathfrak{N} of \mathfrak{M} that satisfies $I \Delta_{0}$.
- For $j \in \operatorname{Aut}(\mathfrak{M}), I_{f i x}(j):=\{m \in M: \forall x \leq$ $m(j(x)=x)\}$.
- Theorem (E, 2006). The following two conditions are equivalent for a countable model \mathfrak{M} of the language of arithmetic:
(a) \mathfrak{M} satisfies $I \Delta_{0}+B \Sigma_{1}+$ Exp.
(b) $\mathfrak{M}=I_{\text {fix }}(j)$ for some nontrivial automorphism j of an end extension \mathfrak{N} of \mathfrak{M} that satisfies $I \Delta_{0}$.

Here $B \Sigma_{1}$ is the Σ_{1}-collection scheme consisting of the universal closure of formulae of the form
$[\forall x<a \exists y \varphi(x, y)] \rightarrow[\exists z \forall x<a \exists y<z \varphi(x, y)]$,
where φ is a Δ_{0}-formula.

- $N F U A^{+}:=N F U^{+}+$"every Cantorian set is strongly Cantorian".
- Φ_{0} is
$\{$ "there is an n-Mahlo cardinal" : $n \in \omega\}$.
- Theorem (Solovay 1995, unpublished):

$$
\operatorname{Con}\left(N F U A^{+}\right) \Longleftrightarrow\left(Z F C+\Phi_{0}\right)
$$

- $\Phi:=\{$ "there is an n-Mahlo cardinal κ such that $\left.V_{\kappa} \prec_{n} V^{\prime \prime}: n \in \omega\right\}$.
- Φ_{0} is weaker than Φ, but $Z F$ proves Con $(Z F+$ $\left.\Phi_{0}\right) \Longleftrightarrow \operatorname{Con}(Z F+\Phi)$.
- Theorem (E, 2003).
(1) $G B C+$ "Ord is weakly compact" is (faithfully) interpretable in $N F U A^{+}$.
(2) The first order part of $G B C+$ "Ord is weakly compact" is precisely Φ.
- $Z F(\mathcal{L})$ is the natural extension of ZermeloFraenkel set theory $Z F$ in the language $\mathcal{L}=$ $\{\in, \triangleleft\}$.
- $G W$ is the axiom " \triangleleft is a global well-ordering".
- Theorem (E, 2003). Suppose T is a consistent completion of $Z F C+\Phi$. There is a model \mathfrak{M} of $T+Z F(\mathcal{L})+G W$ such that \mathfrak{M} has a proper elementary end extension \mathfrak{N} that possesses an automorphism j whose fixed point set is M.
- Theorem ($\mathrm{E}, 2003$). There is a weak fragment W of Zermelo-set theory plus $G W$ such that if some model $\mathfrak{N}=\left(N, \epsilon^{\mathfrak{N}}, \triangleleft^{\mathfrak{N}}\right)$ of W has an automorphism whose fixed point set M forms a proper \triangleleft-initial segment of \mathfrak{N}, then

$$
\mathfrak{M} \vDash Z F(\mathcal{L})+G W+\Phi,
$$

where \mathfrak{M} is the submodel of \mathfrak{N} whose universe is M.

