FROM

FRAGMENTS OF ARITHMETIC

ТО

LARGE CARDINALS

VIA

QUINE-JENSEN SET THEORY

ALI ENAYAT

MATHEMATICAL LOGIC COLLOQUIUM (UTRECHT)

MAY 4, 2007

Russell's $\{x : x \notin x\}$ (1901)

- Russell's (Ramified) Type Theory RTT (1908)
- Ramsey's (Simple) Types Theory TT (1925)
- Quine's New Foundations NF (1937)
- Wright's NeoFregean Arithmetic FA (1983)

- The *language* of NF is $\{=, \in\}$.
- The *logic* of NF is classical first order logic.
- The *axioms* of *NF* are:
 - (1) Extensionality:

 $\forall z (z \in x \leftrightarrow z \in y) \to x = y.$

(2) Stratified Comprehension:

For each stratifiable $\varphi(x)$,

"{ $x:\varphi(x)$ } exists" , i.e.,

 $\exists z \forall t (t \in z \leftrightarrow \varphi(t)).$

 φ is stratified if there is an integer valued function f whose domain is the set of all variables occurring in φ, which satisfies the following two requirements:

(1) f(v) + 1 = f(w), whenever $(v \in w)$ is a subformula of φ ;

(2) f(v) = f(w), whenever (v = w) is a subformula of φ .

- The formula x = x is stratifiable, so there is a universal set V in NF.
- NF proves that V is a Boolean algebra.
- Cardinals and ordinals are defined in NF in the spirit of Russell and Whitehead, define card(X) as:

 $\{Y : \text{there is a bijection from } X \text{ to } Y\}.$

- Card := $\{\lambda : \exists X(\lambda = card(X))\}$ exists in NF.
- Similarly, the set of all ordinals *Ord* exists in *NF*.

- What about Cantor's theorem $card(\mathcal{P}(X)) > card(X)$ applied to V itself?
- In the proof of Cantor's Theorem, given $f: X \to \mathcal{P}(X)$, one needs the set

 $\{x \in X : \neg (x \in f(x))\},\$

whose defining equation is not stratifiable, and therefore unavailable!

USC(X) = {{x} : x ∈ X} exists, and in the NF context, Cantor's theorem is reformulated as:

 $card(\mathcal{P}(X)) > card(USC(X))$

 For a cardinal λ, let T(λ) := card(USC(X)), where X is some (any) element of λ, and define (in the metatheory)

$$\kappa_0$$
 : = card(V);
 κ_{n+1} : = $T(\kappa_n)$.

NF proves:

$$\kappa_0 > \kappa_1 > \cdots > \kappa_n > \cdots$$

- X is Cantorian if card(X) = card(USC(X)).
- X is strongly Cantorian if {⟨x, {x}⟩ : x ∈ X} exists.

• Rosser's AxCount (Axiom of Counting):

 \mathbb{N} is strongly Cantorian.

- $\mathbb{N} := \{ card(X) : fin(X) \}.$
- fin(X) says

"there is no injection from X into a proper subset of X".

- NF proves the equivalence of AxCount with "all finite sets are Cantorian".
- Theorem (Orey, 1964).

 $NF + AxCount \vdash Con(NF).$

• Corollary. $Con(NF) \Longrightarrow Con(NF + \neg AxCount).$

- **Theorem** (Hailperin, 1944). *NF* is finitely axiomatizable, and $NF = NF_6$.
- Theorem (Grishin, 1969). $NF = NF_4$, and $Con(NF_3)$.
- **Theorem** (Boffa, 1977).

 $\operatorname{Con}(NF) \Rightarrow NF \neq NF_3.$

• Theorem (Boffa, 1988; Kaye-Forster 1991). NF is consistent iff there is a model M of a weak fragment (KF) of Zermelo set theory that possess an automorphism j such that for some $m \in M$, M believes

$$|j(m)| = |\mathcal{P}(m)|.$$

• Theorem (Specker, 1960).

 $Con(NF) \iff Con(TT + Ambiguity).$

• *TT* is formulated within *multisorted* first order logic with countably many sorts

$$X_0, X_1, \cdots$$

• The language of TT is

$$\{\in_0,\in_1,\cdots\}\cup\{=_0,=_1,\cdots\}.$$

• The atomic formulas are of the form

$$x^n = y^n$$
, and $x^n \in_n y^{n+1}$.

• The axioms of TT consist of:

Extensionality:

$$\left((\forall z^n ((z^n \in_n x^{n+1} \leftrightarrow z^n \in_n y^{n+1})) \to x^{n+1} = y^{n+1} \right)$$

and

Comprehension:

$$\exists z^{n+1} (\forall y^n (y^n \in x^{n+1} \leftrightarrow \varphi(x^n)).$$

• The ambiguity scheme consists of sentences of the form $\varphi \longleftrightarrow \varphi^+$, where φ^+ is the result of "bumping all types by 1" in φ .

- Quine-Jensen set theory *NFU*: relax extensionality to allow urelements.
- MacLane set theory *Mac*: Zermelo set theory with Comprehension restricted to Δ_0 formulas.
- $NFU^+ := NFU + \text{ infinity} + \text{ choice}.$
- $NFU^- := NFU + "V$ is finite" + choice.
- Theorem (Jensen, 1968). Let $NFU^+ := NFU + Infinity + Choice$.

(1) Con $(NFU^+) \iff$ Con (Mac).

(2) Con $(PA) \Rightarrow$ Con (NFU^{-}) .

(3) If ZF has an ω -standard model, then NFU has an ω -standard model.

Boffa's simplification of Jensen's proof (1988)

• Arrange a model $\mathfrak{M} := (M, E)$ of Mac, and an automorphism j of M such that

(a) For some infinite $\alpha \in M$, $j(\alpha) < \alpha$, and

(b) V_{κ} exists in M;

• Define E_{new} on $V^{\mathfrak{M}}_{\alpha}$ by: $x \ E_{new} \ y$ iff

 $x \ E_{new} \ y \ \text{iff} \ j(x) E y \ \text{and} \ \mathfrak{M} \vDash y \in V_{j(\alpha)+1}.$

• Theorem (Jensen-Boffa-Hinion). NFU^+ has a model iff there is a model \mathfrak{M} of Mac that has an automorphism j such that for some infinite ordinal α of \mathfrak{M} ,

$$\left(2^{|\alpha|}\right)^{\mathfrak{M}} \leq j(\alpha).$$

Solovay's Work (2002, unpublished)

•
$$(I\Delta_0 + Superexp) \vdash$$

 $\operatorname{Con}(NFU^{-}) \iff \operatorname{Con}(I\Delta_0 + Exp).$

• $(I\Delta_0 + Exp) + Con(I\Delta_0 + Exp) \nvDash$

$$Con((NFU^{-}).$$

Modulo Jensen's work, in order to arrange a model of (NFU + "V is finite") it suffices to build a model M of $(I\Delta_0 + Exp)$ with a nontrivial automorphism j such that for some $m \in M$,

$$2^m \leq j(m).$$

- NFUA⁻ := NFU⁻+ "every Cantorian set is strongly Cantorian".
- $VA := I\Delta_0 +$ "j is a nontrivial automorphism whose fixed point set is downward closed".
- **Theorem**. VA can be (faithfully) interpreted in $NFUA^{-\infty}$.
- Theorem. $Con(PA) \iff Con(NFUA)$.
- (1) (Solovay) $Con(PA) \Rightarrow Con(NFUA)$.
- (2) (E) $Con(NFUA) \Rightarrow Con(PA)$.

(3) (E) ACA_0 is (faithfully) interpretable into VA. Therefore (1) cannot be established within $I\Delta_0 + Exp$.

• Theorem (E, 2006). The following two conditions are equivalent for any model \mathfrak{M} of the language of arithmetic:

(a) \mathfrak{M} satisfies PA

(b) $\mathfrak{M} = fix(j)$ for some nontrivial automorphism j of an end extension \mathfrak{N} of \mathfrak{M} that satisfies $I\Delta_0$.

- For $j \in Aut(\mathfrak{M}), I_{fix}(j) := \{m \in M : \forall x \leq m(j(x) = x)\}.$
- Theorem (E, 2006). The following two conditions are equivalent for a countable model \mathfrak{M} of the language of arithmetic:

(a) \mathfrak{M} satisfies $I\Delta_0 + B\Sigma_1 + Exp$.

(b) $\mathfrak{M} = I_{fix}(j)$ for some nontrivial automorphism j of an end extension \mathfrak{N} of \mathfrak{M} that satisfies $I\Delta_0$.

Here $B\Sigma_1$ is the Σ_1 -collection scheme consisting of the universal closure of formulae of the form

 $[\forall x < a \exists y \ \varphi(x, y)] \rightarrow [\exists z \ \forall x < a \ \exists y < z \ \varphi(x, y)],$

where φ is a Δ_0 -formula.

- NFUA⁺ := NFU⁺+ "every Cantorian set is strongly Cantorian".
- Φ₀ is

{ "there is an *n*-Mahlo cardinal": $n \in \omega$ }.

• Theorem (Solovay 1995, unpublished):

$$Con(NFUA^+) \iff (ZFC + \Phi_0).$$

- $\Phi := \{$ "there is an *n*-Mahlo cardinal κ such that $V_{\kappa} \prec_n V$ ": $n \in \omega \}$.
- Φ_0 is weaker than Φ , but ZF proves $Con(ZF + \Phi_0) \iff Con(ZF + \Phi)$.

• **Theorem** (E, 2003).

(1) GBC + "Ord is weakly compact" is (faith-fully) interpretable in $NFUA^+$.

(2) The first order part of GBC + "Ord is weakly compact" is precisely Φ .

- $ZF(\mathcal{L})$ is the natural extension of Zermelo-Fraenkel set theory ZF in the language $\mathcal{L} = \{\in, \triangleleft\}$.
- GW is the axiom " \lhd is a global well-ordering".

- Theorem (E, 2003). Suppose T is a consistent completion of ZFC+ Φ. There is a model M of T+ZF(L)+GW such that M has a proper elementary end extension N that possesses an automorphism j whose fixed point set is M.
- Theorem (E, 2003). There is a weak fragment W of Zermelo-set theory plus GW such that if some model 𝔑 = (N, ∈𝔑, ⊲𝔑) of W has an automorphism whose fixed point set M forms a proper ⊲-initial segment of 𝔑, then

$$\mathfrak{M} \vDash ZF(\mathcal{L}) + GW + \Phi,$$

where \mathfrak{M} is the submodel of \mathfrak{N} whose universe is M.