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WARM-UP

• Automorphisms of N, Z, Q, R, and C.

• Theorem (Ehrenfeucht and Mostowski).

Given any infinite model M and any linear

order L, there is an elementary extension

ML of M such that

Aut(L) ↪→ Aut(ML).

• (standard proof) Two incantations:

abracadabra (Ramsey’s Theorem)

ajji majji latarrajji (Compactness Theorem).



EM WITH ONE ABRACADABRA

• M = (M, · · ·) is a infinite structure, and L
is a linear order.

• Fix a nonprincipal ultrafilter U over P(N).

• We shall build the L-iterated ultrapower of

M modulo U with ‘bare hands’

M∗ :=
∏

U ,L
M.



A KEY DEFINITION

(REMINISCENT OF FUBINI)

• Define U2 as

{X ⊆ N2 : {a ∈ N :

(X)a︷ ︸︸ ︷
{b ∈ N : (a, b) ∈ X}∈ U} ∈ U .

• More generally, define Un+1 as

{X ⊆ Nn+1 : {a ∈ N : (X)a ∈ Un} ∈ U},

where

(X)a := {(b1, · · ·, bn) : (a, b1, · · ·, bn) ∈ X}



BUILDING THE ITERATED
ULTRAPOWER (1)

• Let Υ be the set of terms τ of the form

f(l1, · · ·, ln),
where f : Nn → M and

(l1, · · ·, ln) ∈ [L]n.

• Given f(l1, · · ·, lr) and g(l
′
1, · · ·, l′s) from Υ,

let

P := {l1, · · ·, lr} ∪ {l′1, · · ·, l′s}, p := |P | ,
and relabel the elements of P in increasing
order as l1 < · · · < lp. This relabelling gives
rise to increasing sequences (j1, j2, · · ·, jr)
and (k1, k2, · · ·, ks) from {1, · · ·, p} such that

l1 = lj1, l2 = lj2, · · · , lr = ljr

and

l′1 = lk1
, l

′
2 = lk2

, · · · , l
′
s = lks.



BUILDING THE ITERATED

ULTRAPOWER (2)

• With the relabelling at hand, define:

f(l1, · · ·, lr) ∼ g(l
′
1, · · ·, l′s)

iff

{(i1, · · ·, ip) ∈ Np : f(ij1, ···, ijr) = g(ik1
, ···, iks)} ∈ Up

• The universe M∗ of M∗ consists of equiva-

lence classes {[τ ] : τ ∈ Υ}.



BUILDING THE ITERATED

ULTRAPOWER (2)

• The operations and relations of M∗ are

similarly defined, e.g.,

[f(l1, · · ·, lr)] CM∗
[g(l

′
1, · · ·, l′s)]

iff

{(i1, · · ·, ip) ∈ Np : f(ij1, ···, ijr) CM g(ik1
, ···, iks)} ∈ Up.



PROPERTIES OF THE ITERATED
ULTRAPOWER (1)

• For m ∈ M , let cm be the constant function
cm : N→ {m}. We shall identify the element
[cm(l)] with m.

• We shall also identify [id(l)] with l, where
id : N→ N is the identity function (WLOG
N ⊆ M).

• Therefore M ∪L can be viewed as a subset
of M∗.

• Theorem. For every formula ϕ(x1, · · ·, xn),
and every (l1, · · ·, ln) ∈ [L]n, the following
are equivalent:

(a) M∗ ² ϕ(l1, l2, · · ·, ln);

(b) {(i1, · · ·, in) ∈ Nn : M ² ϕ(i1, ···, in)} ∈ Un.



PROPERTIES OF THE ITERATED

ULTRAPOWER (2)

• Corollary 1. M ≺ M∗, and L is a set of

order indiscernibles in M∗.

• Corollary 2. There is a group embedding

j 7→ ̂ of Aut(L) into Aut(M∗) via

̂([f(l1, · · ·, ln)]) = [f(j(l1), · · ·, j(ln))].

Moreover, if j is fixed point free, then

fix(̂) = M

.



SKOLEM-GAIFMAN ULTRAPOWERS

• M ² PA, and U is a nonprincipal ultrafilter
on (parametrically) definable subsets of M.

• To allow iterations, U needs to be “partially
codable in M”, in the following sense:

• U is iterable if for every M-definable family
〈Xm : m ∈ M〉 of subsets of M , then the
following set is definable in M:

{m ∈ M : Xm ∈ U}.

• Theorem (Gaifman). Let M∗ be the Z-
iterated ultrapower of M modulo an iter-
able nonprincipal ultrafilter U. Then for
some j ∈ Aut(M∗)

fix(j) = M .



REVERSING THE GAIFMAN RESULT

• I is a strong cut of M ² I∆0, if for each

function f whose graph is coded in M , and

whose domain includes M, there is some s

in M , such that for all i ∈ I,

f(i) /∈ I ⇐⇒ s < f(i).

• Theorem (Kirby-Paris). Strong cuts are

models of PA.

• Theorem. If M ² I∆0 and j ∈ Aut(M)

with fix(j) (e M , then fix(j) is a strong

cut of M.



CHARACTERIZING ACA0

• For a cut I of M ² I∆0, SSy(N, I) is the
collection of subsets of I of the form I ∩X,

where X is a coded subset of M .

• Theorem. The following two conditions
are equivalent for a countable (M,A):

(1) (M,A) ² ACA0.

(2) There is an e.e.e. M∗ of M that pos-
sesses an automorphism j whose fixed point
set is precisely M , and SSy(M∗, M) = A.

• (Visser Arithmetic) V A := I∆0+ “j is a
nontrivial automorphism whose fixed point
set is downward closed”.

• Theorem. ACA0 is interpretable in V A.



[ALMOST] CHARACTERIZING Z2 (1)

• Suppose M∗ ² I∆0, and M is a cut of M∗.
An automorphism j of M∗ is M-amenable

if the fixed point set of j is precisely M ,

and for every formula ϕ(x, j) in the lan-

guage LA ∪ {j}, possibly with suppressed

parameters from N,

{a ∈ M : (M∗, j) ² ϕ(a, j)} ∈ SSy(M∗, M).

• DC is the scheme in the language of

second order arithmetic consisting of

formulas of the form

∀n∀X∃Y ϕ(n, X, Y ) → ∃Z∀nϕ(n, (Z)n , (Z)n+1).



[ALMOST] CHARACTERIZING Z2 (2)

• Theorem. Suppose (M,A) is a countable

model of Z2 + DC. There exists an e.e.e.

M∗ of M such that SSy(M∗, M) = A and

M∗ has an M-amenable automorphism.

• Theorem. If M∗ ² I∆0 and M is a cut

of M∗ such that M∗ has an M-amenable

automorphism, then (M, SSy(N, M) ² Z2.



A Characterization of I∆0 + Exp + BΣ1

• BΣ1 is the Σ1-collection scheme consisting

of the universal closure of formulae of the

form, where ϕ is a ∆0-formula:

[∀x < a ∃y ϕ(x, y)] → [∃z ∀x < a ∃y < z ϕ(x, y)].

• Ifix(j) is the largest initial segment of the

domain of j that is pointwise fixed by j

• Theorem The following two conditions are

equivalent for a countable model M of the

language of arithmetic:

(1) M ² I∆0 + BΣ1 + Exp.

(2) M = Ifix(j) for some nontrivial auto-

morphism j of an end extension M∗ of M

that satisfies I∆0.



Tools for (a) ⇒ (b) :

• (1) Theorem (Wilkie-Paris). Every count-
able model of I∆0+Exp+BΣ1 has an end
extension to a model of I∆0.

• (2) A variant of a construction of Paris-
Mills: given a cut I of a countable model
M ² PA that is closed under exponenti-
ation, one can fix the elements of I and
‘blow-up’ all elements above I to any de-
sired cardinality in some elementary exten-
sion of M.

Bonus:

• A new proof, and a strengthening, of a the-
orem of Smoryński that characterizes cuts
under exponentiation in countable recur-
sively saturated models of PA.



ZFC+‘Reflective’ Mahlo Cardinals (1)

• EST (L) [Elementary Set Theory] is obtained

from the usual axiomatization of ZFC(L)

by deleting Power Set and Replacement,

and adding ∆0(L)-Separation.

• GW0 [Global Well-ordering] is the axiom

expressing “C well-orders the universe”.

• GW is the strengthening of GW0 obtained

by adding the following two axioms to GW0:

(a) ∀x∀y(x ∈ y → x C y);

(b) ∀x∃y∀z(z ∈ y ←→ z C x).



ZFC+‘Reflective’ Mahlo Cardinals (2)

• Φ is

{(κ is n-Mahlo and Vκ ≺Σn V) : n ∈ ω}.

• Theorem. The following are equivalent

for a model M of the language L = {∈, C}.

(a) M = fix(j) for some j ∈ Aut(M∗),
where M∗ ² EST (L) + GW and M∗ end

extends M∗.

(b) M ² ZFC + Φ.

I−∆0
PA ∼ EST (L)+GW

ZFC+Φ



A KEY EQUIVALENCE

• Theorem. If (M,A) ² GBC + “Ord is

weakly compact”, then M ² ZFC + Φ.

• Theorem. Every countable recursively sat-

urated model of ZFC+Φ can be expanded

to a model of GBC +“Ord is weakly com-

pact”.

• Corollary. GBC + “Ord is weakly com-

pact” is a conservative extension of ZFC+

Φ.



OTHER THEORIES THAT CAN BE

CHARACTERIZED

• Gödel-Bernays theory of classes, augmented

with a dependent choice scheme, and the

sentence “Ord is weakly compact”.

• KPPower := The theory of “power admis-

sible sets”.

• The subsystem WKL∗0 of WKL0 whose first

order part is I∆0 + Exp + BΣ1.



CONNECTION WITH QUINE-JENSEN SET
THEORY (1)

• The language of NF is {=,∈}.

• The axioms of NF are:

(1) Extensionality

(2) Stratified Comprehension: For each strat-
ifiable ϕ(x),“{x : ϕ(x)} exists”.

• ϕ is stratifiable if there is an integer valued
function f whose domain is the set of all
variables occurring in ϕ, which satisfies:

(1) f(v) + 1 = f(w), whenever (v ∈ w) is a
subformula of ϕ;

(2) f(v) = f(w), whenever (v = w) is a
subformula of ϕ.



CONNECTION WITH QUINE-JENSEN SET
THEORY (2)

• Quine-Jensen set theory NFU : relax ex-
tensionality to allow urelements.

• MacLane set theory Mac: Zermelo set the-
ory with Comprehension restricted to ∆0-
formulas.

• NFU+ := NFU + Infinity + Choice.

• NFU− := NFU + “V is finite” + Choice.

• Theorem (Jensen).

(1) Con (Mac) ⇒ Con (NFU+).

(2) Con (PA) ⇒ Con (NFU−).



CONNECTION WITH QUINE-JENSEN SET

THEORY (3)

• USC(X) := {{x} : x ∈ X}.

• X is Cantorian if card(X) = card(USC(X)).

• X is strongly Cantorian if {〈x, {x}〉 : x ∈ X}
exists.

• NFUA± := NFU± augmented with “every

Cantorian set is strongly Cantorian”.

• Theorem. NFUA+ and GBC + “Ord is

weakly compact” are mutually interpretable.

• Theorem. NFUA− and ACA0 are mutu-

ally interpretable.


