AUTOMORPHISMS AND STRONG FOUNDATIONAL SYSTEMS

ALI ENAYAT
LOGIC SEMINAR
UNIVERSITY OF MANCHESTER
MAY 23, 2007

WARM-UP

- Automorphisms of $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}$, and \mathbb{C}.
- Theorem (Ehrenfeucht and Mostowski). Given any infinite model \mathfrak{M} and any linear order \mathbb{L}, there is an elementary extension $\mathfrak{M}_{\mathbb{L}}$ of \mathfrak{M} such that

$$
\operatorname{Aut}(\mathbb{L}) \hookrightarrow \operatorname{Aut}\left(\mathfrak{M}_{\mathbb{L}}\right)
$$

- (standard proof) Two incantations:
abracadabra (Ramsey's Theorem)

EM WITH ONE ABRACADABRA

- $\mathfrak{M}=(M, \cdots)$ is a infinite structure, and \mathbb{L} is a linear order.
- Fix a nonprincipal ultrafilter \mathcal{U} over $\mathcal{P}(\mathbb{N})$.
- We shall build the \mathbb{L}-iterated ultrapower of \mathfrak{M} modulo \mathcal{U} with 'bare hands'

$$
\mathfrak{M}^{*}:=\prod_{\mathcal{U}, \mathbb{L}} \mathfrak{M} .
$$

A KEY DEFINITION

(REMINISCENT OF FUBINI)

- Define \mathcal{U}^{2} as

$$
\{X \subseteq \mathbb{N}^{2}:\{a \in \mathbb{N}: \overbrace{\{b \in \mathbb{N}:(a, b) \in X\}}^{(X)_{a}} \in \mathcal{U}\} \in \mathcal{U} .
$$

- More generally, define \mathcal{U}^{n+1} as

$$
\left\{X \subseteq \mathbb{N}^{n+1}:\left\{a \in \mathbb{N}:(X)_{a} \in \mathcal{U}^{n}\right\} \in \mathcal{U}\right\}
$$

where

$$
(X)_{a}:=\left\{\left(b_{1}, \cdots, b_{n}\right):\left(a, b_{1}, \cdots, b_{n}\right) \in X\right\}
$$

BUILDING THE ITERATED ULTRAPOWER (1)

- Let Υ be the set of terms τ of the form

$$
f\left(l_{1}, \cdots, l_{n}\right),
$$

where $f: \mathbb{N}^{n} \rightarrow M$ and

$$
\left(l_{1}, \cdots, l_{n}\right) \in[\mathbb{L}]^{n} .
$$

- Given $f\left(l_{1}, \cdots, l_{r}\right)$ and $g\left(l_{1}^{\prime}, \cdots, l_{s}^{\prime}\right)$ from Υ, let

$$
P:=\left\{l_{1}, \cdots, l_{r}\right\} \cup\left\{l_{1}^{\prime}, \cdots, l_{s}^{\prime}\right\}, \quad p:=|P|,
$$

and relabel the elements of P in increasing order as $\bar{l}_{1}<\cdots<\bar{l}_{p}$. This relabelling gives rise to increasing sequences ($j_{1}, j_{2}, \cdots, j_{r}$) and ($k_{1}, k_{2}, \cdots, k_{s}$) from $\{1, \cdots, p\}$ such that

$$
l_{1}=\bar{l}_{j_{1}}, l_{2}=\bar{l}_{j_{2}}, \cdots, l_{r}=\bar{l}_{j_{r}}
$$

and

$$
l_{1}^{\prime}=\bar{l}_{k_{1}}, l_{2}^{\prime}=\bar{l}_{k_{2}}, \cdots, l_{s}^{\prime}=\bar{l}_{k_{s}} .
$$

BUILDING THE ITERATED ULTRAPOWER (2)

- With the relabelling at hand, define:

$$
f\left(l_{1}, \cdots, l_{r}\right) \sim g\left(l_{1}^{\prime}, \cdots, l_{s}^{\prime}\right)
$$

iff
$\left\{\left(i_{1}, \cdots, i_{p}\right) \in \mathbb{N}^{p}: f\left(i_{j_{1}}, \cdots, i_{j_{r}}\right)=g\left(i_{k_{1}}, \cdots, i_{k_{s}}\right)\right\} \in \mathcal{U}^{p}$

- The universe M^{*} of \mathfrak{M}^{*} consists of equivalence classes $\{[\tau]: \tau \in \Upsilon\}$.

BUILDING THE ITERATED ULTRAPOWER (2)

- The operations and relations of \mathfrak{M}^{*} are similarly defined, e.g.,

$$
\left[f\left(l_{1}, \cdots, l_{r}\right)\right] \triangleleft_{\mathfrak{M}^{*}}\left[g\left(l_{1}^{\prime}, \cdots, l_{s}^{\prime}\right)\right]
$$

iff
$\left\{\left(i_{1}, \cdots, i_{p}\right) \in \mathbb{N}^{p}: f\left(i_{j_{1}}, \cdots, i_{j_{r}}\right) \triangleleft^{\mathfrak{M}} g\left(i_{k_{1}}, \cdots, i_{k_{s}}\right)\right\} \in \mathcal{U}^{p}$.

PROPERTIES OF THE ITERATED ULTRAPOWER (1)

- For $m \in M$, let c_{m} be the constant function $c_{m}: \mathbb{N} \rightarrow\{m\}$. We shall identify the element [$\left.c_{m}(l)\right]$ with m.
- We shall also identify $[i d(l)]$ with l, where $i d: \mathbb{N} \rightarrow \mathbb{N}$ is the identity function (WLOG $\mathbb{N} \subseteq M)$.
- Therefore $M \cup \mathbb{L}$ can be viewed as a subset of M^{*}.
- Theorem. For every formula $\varphi\left(x_{1}, \cdots, x_{n}\right)$, and every $\left(l_{1}, \cdots, l_{n}\right) \in[\mathbb{L}]^{n}$, the following are equivalent:
(a) $\mathfrak{M}^{*} \vDash \varphi\left(l_{1}, l_{2}, \cdots, l_{n}\right)$;
(b) $\left\{\left(i_{1}, \cdots, i_{n}\right) \in \mathbb{N}^{n}: \mathfrak{M} \vDash \varphi\left(i_{1}, \cdots, i_{n}\right)\right\} \in \mathcal{U}^{n}$.

PROPERTIES OF THE ITERATED ULTRAPOWER (2)

- Corollary 1. $\mathfrak{M} \prec \mathfrak{M}^{*}$, and \mathbb{L} is a set of order indiscernibles in \mathfrak{M}^{*}.
- Corollary 2. There is a group embedding $j \mapsto \hat{\jmath}$ of $\operatorname{Aut}(\mathbb{L})$ into $\operatorname{Aut}\left(\mathfrak{M}^{*}\right)$ via

$$
\hat{\jmath}\left(\left[f\left(l_{1}, \cdots, l_{n}\right)\right]\right)=\left[f\left(j\left(l_{1}\right), \cdots, j\left(l_{n}\right)\right)\right] .
$$

Moreover, if j is fixed point free, then

$$
f i x(\hat{\jmath})=M
$$

SKOLEM-GAIFMAN ULTRAPOWERS

- $\mathfrak{M} \vDash P A$, and \mathcal{U} is a nonprincipal ultrafilter on (parametrically) definable subsets of \mathfrak{M}.
- To allow iterations, \mathcal{U} needs to be "partially codable in \mathfrak{M}^{\prime}, in the following sense:
- \mathcal{U} is iterable if for every \mathfrak{M}-definable family $\left\langle X_{m}: m \in M\right\rangle$ of subsets of M, then the following set is definable in \mathfrak{M} :

$$
\left\{m \in M: X_{m} \in \mathcal{U}\right\} .
$$

- Theorem (Gaifman). Let \mathfrak{M}^{*} be the \mathbb{Z} iterated ultrapower of \mathfrak{M} modulo an iterable nonprincipal ultrafilter \mathcal{U}. Then for some $j \in \operatorname{Aut}\left(\mathfrak{M}^{*}\right)$

$$
f i x(j)=M .
$$

REVERSING THE GAIFMAN RESULT

- I is a strong cut of $\mathfrak{M} \vDash I \Delta_{0}$, if for each function f whose graph is coded in M, and whose domain includes M, there is some s in M, such that for all $i \in I$,

$$
f(i) \notin I \Longleftrightarrow s<f(i)
$$

- Theorem (Kirby-Paris). Strong cuts are models of PA.
- Theorem. If $\mathfrak{M} \vDash I \Delta_{0}$ and $j \in \operatorname{Aut}(\mathfrak{M})$ with $f_{i x}(j) \subsetneq e M$, then $f i x(j)$ is a strong cut of \mathfrak{M}.

CHARACTERIZING ACA

- For a cut I of $\mathfrak{M} \vDash I \Delta_{0}, \operatorname{SSy}(\mathfrak{N}, I)$ is the collection of subsets of I of the form $I \cap X$, where X is a coded subset of M.
- Theorem. The following two conditions are equivalent for a countable ($\mathfrak{M}, \mathcal{A}$):
(1) $(\mathfrak{M}, \mathcal{A}) \vDash A C A_{0}$.
(2) There is an e.e.e. \mathfrak{M}^{*} of \mathfrak{M} that possesses an automorphism j whose fixed point set is precisely M, and $\operatorname{SSy}\left(\mathfrak{M}^{*}, M\right)=\mathcal{A}$.
- (Visser Arithmetic) $V A:=I \Delta_{0}+" j$ is a nontrivial automorphism whose fixed point set is downward closed'".
- Theorem. $A C A_{0}$ is interpretable in $V A$.

[ALMOST] CHARACTERIZING Z_{2} (1)

- Suppose $\mathfrak{M}^{*} \vDash I \Delta_{0}$, and M is a cut of \mathfrak{M}^{*}. An automorphism j of \mathfrak{M}^{*} is M-amenable if the fixed point set of j is precisely M, and for every formula $\varphi(x, j)$ in the language $\mathcal{L}_{A} \cup\{j\}$, possibly with suppressed parameters from N,

$$
\left\{a \in M:\left(\mathfrak{M}^{*}, j\right) \vDash \varphi(a, j)\right\} \in S S y\left(\mathfrak{M}^{*}, M\right) .
$$

$D C$ is the scheme in the language of second order arithmetic consisting of formulas of the form

$$
\forall n \forall X \exists Y \varphi(n, X, Y) \rightarrow \exists Z \forall n \varphi\left(n,(Z)_{n},(Z)_{n+1}\right) .
$$

[ALMOST] CHARACTERIZING Z_{2} (2)

- Theorem. Suppose $(\mathfrak{M}, \mathcal{A})$ is a countable model of $Z_{2}+D C$. There exists an e.e.e. \mathfrak{M}^{*} of \mathfrak{M} such that $\operatorname{SSy}\left(\mathfrak{M}^{*}, M\right)=\mathcal{A}$ and \mathfrak{M}^{*} has an M-amenable automorphism.
- Theorem. If $\mathfrak{M}^{*} \vDash I \Delta_{0}$ and M is a cut of \mathfrak{M}^{*} such that \mathfrak{M}^{*} has an M-amenable automorphism, then ($\mathfrak{M}, \operatorname{SSy}(\mathfrak{N}, M) \vDash Z_{2}$.

A Characterization of $I \Delta_{0}+E x p+B \Sigma_{1}$

- $B \Sigma_{1}$ is the Σ_{1}-collection scheme consisting of the universal closure of formulae of the form, where φ is a Δ_{0}-formula:
$[\forall x<a \exists y \varphi(x, y)] \rightarrow[\exists z \forall x<a \exists y<z \varphi(x, y)]$.
- $I_{f i x}(j)$ is the largest initial segment of the domain of j that is pointwise fixed by j
- Theorem The following two conditions are equivalent for a countable model \mathfrak{M} of the language of arithmetic:
(1) $\mathfrak{M} \vDash I \Delta_{0}+B \Sigma_{1}+E x p$.
(2) $\mathfrak{M}=I_{f i x}(j)$ for some nontrivial automorphism j of an end extension \mathfrak{M}^{*} of \mathfrak{M} that satisfies $I \Delta_{0}$.

Tools for $(a) \Rightarrow(b)$:

- (1) Theorem (Wilkie-Paris). Every countable model of $I \Delta_{0}+E x p+B \Sigma_{1}$ has an end extension to a model of $I \Delta_{0}$.
- (2) A variant of a construction of ParisMills: given a cut I of a countable model $\mathfrak{M} \vDash P A$ that is closed under exponentiation, one can fix the elements of I and 'blow-up' all elements above I to any desired cardinality in some elementary extension of \mathfrak{M}.

Bonus:

- A new proof, and a strengthening, of a theorem of Smoryński that characterizes cuts under exponentiation in countable recursively saturated models of $P A$.

ZFC+'Reflective' Mahlo Cardinals (1)

- $\operatorname{EST}(\mathcal{L})$ [Elementary Set Theory] is obtained from the usual axiomatization of $Z F C(\mathcal{L})$ by deleting Power Set and Replacement, and adding $\Delta_{0}(\mathcal{L})$-Separation.
- $G W_{0}$ [Global Well-ordering] is the axiom expressing " \triangleleft well-orders the universe".
- $G W$ is the strengthening of $G W_{0}$ obtained by adding the following two axioms to $G W_{0}$:
(a) $\forall x \forall y(x \in y \rightarrow x \triangleleft y)$;
(b) $\forall x \exists y \forall z(z \in y \longleftrightarrow z \triangleleft x)$.

ZFC+'Reflective' Mahlo Cardinals (2)

- Φ is
$\left\{\left(\kappa\right.\right.$ is n-Mahlo and $\left.\left.V_{\kappa} \prec \Sigma_{n} \mathbf{V}\right): n \in \omega\right\}$.
- Theorem. The following are equivalent for a model \mathfrak{M} of the language $\mathcal{L}=\{\in, \triangleleft\}$.
(a) $\mathfrak{M}=\operatorname{fix}(j)$ for some $j \in \operatorname{Aut}\left(\mathfrak{M}^{*}\right)$, where $\mathfrak{M}^{*} \vDash \operatorname{EST}(\mathcal{L})+G W$ and \mathfrak{M}^{*} end extends \mathfrak{M}^{*}.
(b) $\mathfrak{M} \vDash Z F C+\Phi$.

$$
\frac{I-\triangle_{0}}{P A} \sim \frac{E S T(\mathcal{L})+G W}{Z F C+\Phi}
$$

A KEY EQUIVALENCE

- Theorem. If $(\mathfrak{M}, \mathcal{A}) \vDash G B C+$ "Ord is weakly compact", then $\mathfrak{M} \vDash Z F C+\Phi$.
- Theorem. Every countable recursively saturated model of $Z F C+\Phi$ can be expanded to a model of $G B C+$ "Ord is weakly compact".
- Corollary. $G B C+$ "Ord is weakly compact" is a conservative extension of ZFC+ Ф.

OTHER THEORIES THAT CAN BE CHARACTERIZED

- Gödel-Bernays theory of classes, augmented with a dependent choice scheme, and the sentence "Ord is weakly compact".
- K $P^{\text {Power }}:=$ The theory of "power admissible sets".
- The subsystem $W K L_{0}^{*}$ of $W K L_{0}$ whose first order part is $I \Delta_{0}+E x p+B \Sigma_{1}$.

CONNECTION WITH QUINE-JENSEN SET THEORY (1)

- The language of $N F$ is $\{=, \in\}$.
- The axioms of $N F$ are:
(1) Extensionality
(2) Stratified Comprehension: For each stratifiable $\varphi(x)$, " $\{x: \varphi(x)\}$ exists".
- φ is stratifiable if there is an integer valued function f whose domain is the set of all variables occurring in φ, which satisfies:
(1) $f(v)+1=f(w)$, whenever $(v \in w)$ is a subformula of φ;
(2) $f(v)=f(w)$, whenever $(v=w)$ is a subformula of φ.

CONNECTION WITH QUINE-JENSEN SET THEORY (2)

- Quine-Jensen set theory NFU: relax extensionality to allow urelements.
- MacLane set theory Mac: Zermelo set theory with Comprehension restricted to $\Delta_{0^{-}}$ formulas.
- $N F U^{+}:=N F U+$ Infinity + Choice.
- $N F U^{-}:=N F U+$ " V is finite" + Choice.
- Theorem (Jensen).
(1) Con $(M a c) \Rightarrow \operatorname{Con}\left(N F U^{+}\right)$.
(2) Con $(P A) \Rightarrow \operatorname{Con}\left(N F U^{-}\right)$.

CONNECTION WITH QUINE-JENSEN SET THEORY (3)

- $\operatorname{USC}(X):=\{\{x\}: x \in X\}$.
- X is Cantorian if $\operatorname{card}(X)=\operatorname{card}(U S C(X))$.
- X is strongly Cantorian if $\{\langle x,\{x\}\rangle: x \in X\}$ exists.
- $N F U A^{ \pm}:=N F U^{ \pm}$augmented with "every Cantorian set is strongly Cantorian".
- Theorem. NFUA+ and $G B C+$ "Ord is weakly compact" are mutually interpretable.
- Theorem. $N F U A^{-}$and $A C A_{0}$ are mutually interpretable.

