AUTOMORPHISMS AND STRONG FOUNDATIONAL SYSTEMS

ALI ENAYAT

LOGIC SEMINAR

UNIVERSITY OF MANCHESTER

MAY 23, 2007

WARM-UP

- Automorphisms of \mathbb{N} , \mathbb{Z} , \mathbb{Q} , \mathbb{R} , and \mathbb{C} .
- Theorem (Ehrenfeucht and Mostowski).
 Given any infinite model M and any linear order L, there is an elementary extension M_L of M such that

 $Aut(\mathbb{L}) \hookrightarrow Aut(\mathfrak{M}_{\mathbb{L}}).$

• (standard proof) Two incantations:

abracadabra (Ramsey's Theorem)

ajji majji latarrajji (Compactness Theorem).

EM WITH ONE ABRACADABRA

- $\mathfrak{M} = (M, \cdots)$ is a infinite structure, and \mathbb{L} is a linear order.
- Fix a nonprincipal ultrafilter \mathcal{U} over $\mathcal{P}(\mathbb{N})$.
- We shall build the $\mathbb L\text{-iterated}$ ultrapower of $\mathfrak M$ modulo $\mathcal U$ with 'bare hands'

$$\mathfrak{M}^* := \prod_{\mathcal{U}, \mathbb{L}} \mathfrak{M}.$$

A KEY DEFINITION

(REMINISCENT OF FUBINI)

• Define \mathcal{U}^2 as

 $\{X \subseteq \mathbb{N}^2 : \{a \in \mathbb{N} : \overbrace{b \in \mathbb{N} : (a, b) \in X}^{(X)_a} \in \mathcal{U}\} \in \mathcal{U}.$

• More generally, define \mathcal{U}^{n+1} as

 $\{X \subseteq \mathbb{N}^{n+1} : \{a \in \mathbb{N} : (X)_a \in \mathcal{U}^n\} \in \mathcal{U}\},\$

where

$$(X)_a := \{(b_1, \cdots, b_n) : (a, b_1, \cdots, b_n) \in X\}$$

BUILDING THE ITERATED ULTRAPOWER (1)

• Let Υ be the set of terms τ of the form

 $f(l_1, \cdots, l_n),$ where $f: \mathbb{N}^n \to M$ and

$$(l_1,\cdots,l_n)\in [\mathbb{L}]^n.$$

• Given $f(l_1, \dots, l_r)$ and $g(l'_1, \dots, l'_s)$ from Υ , let

 $P := \{l_1, \dots, l_r\} \cup \{l'_1, \dots, l'_s\}, \quad p := |P|,$ and relabel the elements of P in increasing

order as $\bar{l}_1 < \cdots < \bar{l}_p$. This relabelling gives rise to increasing sequences (j_1, j_2, \cdots, j_r) and (k_1, k_2, \cdots, k_s) from $\{1, \cdots, p\}$ such that

$$l_1 = \bar{l}_{j_1}, \ l_2 = \bar{l}_{j_2}, \ \cdots, \ l_r = \bar{l}_{j_r}$$

and

$$l'_1 = \bar{l}_{k_1}, \ l'_2 = \bar{l}_{k_2}, \ \cdots, \ l'_s = \bar{l}_{k_s}.$$

BUILDING THE ITERATED ULTRAPOWER (2)

• With the relabelling at hand, define:

$$f(l_1, \cdots, l_r) \sim g(l'_1, \cdots, l'_s)$$

iff

 $\{(i_1,\cdots,i_p)\in\mathbb{N}^p:f(i_{j_1},\cdots,i_{j_r})=g(i_{k_1},\cdots,i_{k_s})\}\in\mathcal{U}^p$

The universe M^{*} of M^{*} consists of equivalence classes {[τ] : τ ∈ Υ}.

BUILDING THE ITERATED ULTRAPOWER (2)

• The operations and relations of \mathfrak{M}^* are similarly defined, e.g.,

$$[f(l_1,\cdots,l_r)] \triangleleft^{\mathfrak{M}^*} [g(l'_1,\cdots,l'_s)]$$

iff

 $\{(i_1, \cdots, i_p) \in \mathbb{N}^p : f(i_{j_1}, \cdots, i_{j_r}) \triangleleft^{\mathfrak{M}} g(i_{k_1}, \cdots, i_{k_s})\} \in \mathcal{U}^p.$

PROPERTIES OF THE ITERATED ULTRAPOWER (1)

- For $m \in M$, let c_m be the constant function $c_m : \mathbb{N} \to \{m\}$. We shall identify the element $[c_m(l)]$ with m.
- We shall also identify [id(l)] with l, where $id : \mathbb{N} \to \mathbb{N}$ is the identity function (WLOG $\mathbb{N} \subseteq M$).
- Therefore M∪L can be viewed as a subset of M*.
- Theorem. For every formula $\varphi(x_1, \dots, x_n)$, and every $(l_1, \dots, l_n) \in [\mathbb{L}]^n$, the following are equivalent:

(a)
$$\mathfrak{M}^* \vDash \varphi(l_1, l_2, \cdots, l_n);$$

(b) $\{(i_1, \cdots, i_n) \in \mathbb{N}^n : \mathfrak{M} \vDash \varphi(i_1, \cdots, i_n)\} \in \mathcal{U}^n.$

PROPERTIES OF THE ITERATED ULTRAPOWER (2)

- Corollary 1. M ≺ M*, and L is a set of order indiscernibles in M*.
- Corollary 2. There is a group embedding j → ĵ of Aut(L) into Aut(M*) via ĵ([f(l₁,...,l_n)]) = [f(j(l₁),...,j(l_n))].

Moreover, if j is fixed point free, then $fix(\hat{j}) = M$

•

SKOLEM-GAIFMAN ULTRAPOWERS

- $\mathfrak{M} \models PA$, and \mathcal{U} is a nonprincipal ultrafilter on (parametrically) definable subsets of \mathfrak{M} .
- To allow iterations, $\mathcal U$ needs to be "partially codable in $\mathfrak M$ ", in the following sense:
- \mathcal{U} is *iterable* if for every \mathfrak{M} -definable family $\langle X_m : m \in M \rangle$ of subsets of M, then the following set is definable in \mathfrak{M} :

 $\{m \in M : X_m \in \mathcal{U}\}.$

• Theorem (Gaifman). Let \mathfrak{M}^* be the \mathbb{Z} iterated ultrapower of \mathfrak{M} modulo an iterable nonprincipal ultrafilter \mathcal{U} . Then for some $j \in Aut(\mathfrak{M}^*)$

$$fix(j) = M.$$

REVERSING THE GAIFMAN RESULT

• *I* is a *strong cut* of $\mathfrak{M} \models I\Delta_0$, if for each function *f* whose graph is coded in *M*, and whose domain includes *M*, there is some *s* in *M*, such that for all $i \in I$,

$$f(i) \notin I \iff s < f(i).$$

- **Theorem** (Kirby-Paris). *Strong cuts are models of PA*.
- Theorem. If $\mathfrak{M} \models I\Delta_0$ and $j \in Aut(\mathfrak{M})$ with $fix(j) \subsetneq_e M$, then fix(j) is a strong cut of \mathfrak{M} .

CHARACTERIZING ACA0

- For a cut I of $\mathfrak{M} \models I\Delta_0$, $SSy(\mathfrak{N}, I)$ is the collection of subsets of I of the form $I \cap X$, where X is a coded subset of M.
- **Theorem.** The following two conditions are equivalent for a countable $(\mathfrak{M}, \mathcal{A})$:

(1) $(\mathfrak{M}, \mathcal{A}) \models ACA_0.$

(2) There is an e.e.e. \mathfrak{M}^* of \mathfrak{M} that possesses an automorphism j whose fixed point set is precisely M, and $SSy(\mathfrak{M}^*, M) = \mathcal{A}$.

- (Visser Arithmetic) $VA := I\Delta_0 + "j$ is a nontrivial automorphism whose fixed point set is downward closed".
- **Theorem.** ACA_0 is interpretable in VA.

[ALMOST] CHARACTERIZING Z_2 (1)

• Suppose $\mathfrak{M}^* \models I\Delta_0$, and M is a cut of \mathfrak{M}^* . An automorphism j of \mathfrak{M}^* is M-amenable if the fixed point set of j is precisely M, and for every formula $\varphi(x, j)$ in the language $\mathcal{L}_A \cup \{j\}$, possibly with suppressed parameters from N,

 $\{a \in M : (\mathfrak{M}^*, j) \vDash \varphi(a, j)\} \in SSy(\mathfrak{M}^*, M).$

• *DC* is the scheme in the language of second order arithmetic consisting of formulas of the form

 $\forall n \forall X \exists Y \varphi(n, X, Y) \to \exists Z \forall n \varphi(n, (Z)_n, (Z)_{n+1}).$

[ALMOST] CHARACTERIZING Z_2 (2)

- Theorem. Suppose (M, A) is a countable model of Z₂ + DC. There exists an e.e.e. M^{*} of M such that SSy(M^{*}, M) = A and M^{*} has an M-amenable automorphism.
- Theorem. If $\mathfrak{M}^* \vDash I \Delta_0$ and M is a cut of \mathfrak{M}^* such that \mathfrak{M}^* has an M-amenable automorphism, then $(\mathfrak{M}, SSy(\mathfrak{N}, M) \vDash Z_2)$.

A Characterization of $I\Delta_0 + Exp + B\Sigma_1$

• $B\Sigma_1$ is the Σ_1 -collection scheme consisting of the universal closure of formulae of the form, where φ is a Δ_0 -formula:

 $[\forall x < a \exists y \ \varphi(x, y)] \rightarrow [\exists z \ \forall x < a \ \exists y < z \ \varphi(x, y)].$

- $I_{fix}(j)$ is the largest initial segment of the domain of j that is pointwise fixed by j
- **Theorem** The following two conditions are equivalent for a countable model \mathfrak{M} of the language of arithmetic:

(1) $\mathfrak{M} \vDash I \Delta_0 + B \Sigma_1 + Exp.$

(2) $\mathfrak{M} = I_{fix}(j)$ for some nontrivial automorphism j of an end extension \mathfrak{M}^* of \mathfrak{M} that satisfies $I\Delta_0$.

Tools for $(a) \Rightarrow (b)$:

- (1) **Theorem (**Wilkie-Paris). Every countable model of $I\Delta_0 + Exp + B\Sigma_1$ has an end extension to a model of $I\Delta_0$.
- (2) A variant of a construction of Paris-Mills: given a cut *I* of a countable model M ⊨ *PA* that is closed under exponentiation, one can fix the elements of *I* and 'blow-up' all elements above *I* to any desired cardinality in some elementary extension of M.

Bonus:

 A new proof, and a strengthening, of a theorem of Smoryński that characterizes cuts under exponentiation in countable recursively saturated models of *PA*.

- EST(L) [Elementary Set Theory] is obtained from the usual axiomatization of ZFC(L) by deleting Power Set and Replacement, and adding Δ₀(L)-Separation.
- GW_0 [Global Well-ordering] is the axiom expressing " \lhd well-orders the universe".
- GW is the strengthening of GW_0 obtained by adding the following two axioms to GW_0 :

(a)
$$\forall x \forall y (x \in y \rightarrow x \lhd y);$$

(b) $\forall x \exists y \forall z (z \in y \longleftrightarrow z \lhd x).$

ZFC+'Reflective' Mahlo Cardinals (2)

Φ is

 $\{(\kappa \text{ is } n\text{-Mahlo and } V_{\kappa} \prec_{\Sigma_n} \mathbf{V}) : n \in \omega\}.$

- **Theorem.** The following are equivalent for a model \mathfrak{M} of the language $\mathcal{L} = \{\in, \triangleleft\}$.
 - (a) $\mathfrak{M} = fix(j)$ for some $j \in Aut(\mathfrak{M}^*)$, where $\mathfrak{M}^* \models EST(\mathcal{L}) + GW$ and \mathfrak{M}^* end extends \mathfrak{M}^* .
 - (b) $\mathfrak{M} \vDash ZFC + \Phi$.

$$\frac{I-\Delta_0}{PA} \sim \frac{EST(\mathcal{L})+GW}{ZFC+\Phi}$$

A KEY EQUIVALENCE

- **Theorem.** If $(\mathfrak{M}, \mathcal{A}) \models GBC + "Ord is weakly compact", then <math>\mathfrak{M} \models ZFC + \Phi$.
- Theorem. Every countable recursively saturated model of $ZFC + \Phi$ can be expanded to a model of GBC + "Ord is weakly compact".
- Corollary. GBC + "Ord is weakly compact" is a conservative extension of ZFC+
 Φ.

OTHER THEORIES THAT CAN BE CHARACTERIZED

- Gödel-Bernays theory of classes, augmented with a dependent choice scheme, and the sentence "Ord is weakly compact".
- KP^{Power} := The theory of "power admissible sets".
- The subsystem WKL_0^* of WKL_0 whose first order part is $I\Delta_0 + Exp + B\Sigma_1$.

CONNECTION WITH QUINE-JENSEN SET THEORY (1)

- The *language* of NF is $\{=, \in\}$.
- The *axioms* of *NF* are:

(1) Extensionality

(2) Stratified Comprehension: For each stratifiable $\varphi(x)$, " $\{x : \varphi(x)\}$ exists".

• φ is *stratifiable* if there is an integer valued function f whose domain is the set of **all** variables occurring in φ , which satisfies:

(1) f(v) + 1 = f(w), whenever $(v \in w)$ is a subformula of φ ;

(2) f(v) = f(w), whenever (v = w) is a subformula of φ .

CONNECTION WITH QUINE-JENSEN SET THEORY (2)

- Quine-Jensen set theory *NFU*: relax extensionality to allow urelements.
- MacLane set theory *Mac*: Zermelo set theory with Comprehension restricted to Δ_0 formulas.
- $NFU^+ := NFU +$ Infinity + Choice.
- $NFU^- := NFU + "V$ is finite" + Choice.
- Theorem (Jensen).

(1) Con (*Mac*)
$$\Rightarrow$$
 Con (*NFU*⁺).
(2) Con (*PA*) \Rightarrow Con (*NFU*⁻).

CONNECTION WITH QUINE-JENSEN SET THEORY (3)

- $USC(X) := \{\{x\} : x \in X\}.$
- X is Cantorian if card(X) = card(USC(X)).
- X is strongly Cantorian if $\{\langle x, \{x\} \rangle : x \in X\}$ exists.
- $NFUA^{\pm} := NFU^{\pm}$ augmented with "every Cantorian set is strongly Cantorian".
- **Theorem.** $NFUA^+$ and GBC + "Ord is weakly compact" are mutually interpretable.
- **Theorem.** *NFUA⁻* and *ACA*₀ are mutually interpretable.