AUTOMORPHISMS OF MODELS OF ARITHMETIC

ALI ENAYAT

UNIVERSITÉ DE PARIS VII

Séminaire Général de Logique

28 MAI, 2007

Skolem-Gaifman Ultrapowers (1)

• If \mathfrak{M} has definable Skolem functions, then we can form the *Skolem ultrapower*

$$\mathfrak{M}^* = \prod_{\mathcal{F}, \mathcal{U}} \mathfrak{M}$$

as follows:

(a) Let \mathcal{B} be the Boolean algebra of \mathfrak{M} definable subsets of M, and \mathcal{U} be an ultrafilter over \mathcal{B} .

(b) Let \mathcal{F} be the family of functions from M into M that are parametrically definable in \mathfrak{M} .

(c) The universe of \mathfrak{M}^* is

 $\{[f] : f \in \mathcal{F}\},\$

where

$$f \sim g \iff \{m \in M : f(m) = g(m)\} \in \mathcal{U}$$

Skolem-Gaifman Ultrapowers (2)

- **Theorem** (MacDowell-Specker) *Every model* of *PA* has an elementary end extension.
- Proof: Construct U with the property that every definable map with bounded range is constant on a member of U (this is similar to building a p-point in βω using CH). Then,

$$\mathfrak{M} \prec_e \prod_{\mathcal{F}, \mathcal{U}} \mathfrak{M}..$$

• For each parametrically definable $X \subseteq M$, and $m \in M$,

$$(X)_m = \{ x \in M : \langle m, x \rangle \in X \}.$$

• \mathcal{U} is an *iterable* ultrafilter if for every $X \in \mathcal{B}$, $\{m \in M : (X)_m \in \mathcal{U}\}$ is definable.

Skolem-Gaifman Ultrapowers (3)

• **Theorem** (Gaifman)

(1) If \mathcal{U} is iterable, and \mathbb{L} is a linear order, then

$$\mathfrak{M} \prec_{e,cons} \prod_{\mathcal{F},\mathcal{U},\mathbb{L}} \mathfrak{M} = \mathfrak{M}^*_{\mathbb{L}}.$$

(2) Moreover, if \mathcal{U} is a 'Ramsey ultrafilter' over \mathfrak{M} , then there is isomorphism

 $j\longmapsto \widehat{\jmath}$

between $\operatorname{Aut}(\mathbb{L})$ and $\operatorname{Aut}(\mathfrak{M}^*_{\mathbb{L}}; M)$ such that

$$fix(\hat{\jmath}) = M$$

for every fixed-point-free j.

Schmerl's Generalization

- **Theorem** The following are equivalent for a group G.
 - (a) $G \leq Aut(\mathbb{L})$ for some linear order \mathbb{L} .

(b) G is left-orderable.

(c) $G \cong Aut(\mathfrak{A})$ for some linearly ordered structure $\mathfrak{A} = (A, <, \cdots)$.

(d) $G \cong Aut(\mathfrak{M})$ for some $\mathfrak{M} \models PA$.

(e) $G \cong Aut(\mathbb{F})$ for some ordered field \mathbb{F} .

 Schmerl's methodology: Using a combinatorial theorem of Abramson-Harrington/Nešteřil-Rödl to refine Gaifman's techniques. Countable Recursively Saturated Models (1)

- **Theorem** (Schlipf). Every countable recursively saturated model has continuum many automorphisms.
- Theorem. (Smoryński) If \mathfrak{M} is a countable recursively saturated model of PA and I is a cut of \mathfrak{M} that is closed under exponentiation, then for some $j \in Aut(\mathfrak{M})$, Iis the longest initial segment of \mathfrak{M} that is pointwise fixed by j.
- Key Lemma (also discovered by Kotlarski and Vencovská): Suppose $a, b, c \in M$ are such that $\forall x < 2^{2^c}$, $(\mathfrak{M}, x, a) \equiv (\mathfrak{M}, x, b)$.

Then $\forall a' \in M \exists b' \in M \text{ such that } \forall x < c,$ $(\mathfrak{M}, x, a, a') \equiv (\mathfrak{M}, x, b, b').$ Countable Recursively Saturated Models (2)

• Theorem (Schmerl)

(1) If a countable recursively saturated model \mathfrak{M} is equipped with a ' β -function'' β , then for any countable linear order \mathbb{L} without a last element, \mathfrak{M} is generated by a set of indiscernibles of order-type \mathbb{L} (via β).

(2) Consequently, there is a group embedding from $Aut(\mathbb{Q})$ into $Aut(\mathfrak{M})$.

 Question. Can Smoryński's theorem be combined with part (2) of Schmerl's theorem? Paris-Mills Ultrapowers

• The *index set* is of the form

$$\overline{c} = \{0, 1, \cdot \cdot \cdot, c - 1\}$$

for some nonstandard m in \mathfrak{M} .

- The family of functions used, denoted \mathcal{F} is $(\overline{}^{c}M)^{\mathfrak{M}}$.
- The Boolean algebra at work will be denoted $\mathcal{P}^{\mathfrak{M}}(\overline{c})$.
- This type of ultrapower was first considered by Paris and Mills to show that one can arrange a model of *PA* in which there is an externally countable nonstandard integer *H* such that the external cardinality of *Superexp*(2, *H*) is of any prescribed infinite cardinality.

- A filter $\mathcal{U} \subseteq \mathcal{P}^{\mathfrak{M}}(\overline{c})$ is canonically Ramsey if for every $f \in \mathcal{F}_c$, and every $n \in \mathbb{N}^+$, if $f : [\overline{c}]^n \to M$, then there is some $H \in \mathcal{U}$ such that H is f-canonical;
- \mathcal{U} is *I*-tight if for every $f \in \mathcal{F}_c$, and every $n \in \mathbb{N}^+$, if $f : [\overline{c}]^n \to M$, then there is some $H \in \mathcal{U}$ such either f is constant on H, or there is some $m_0 \in M \setminus I$ such that $f(\mathbf{x}) > m_0$ for all $\mathbf{x} \in [H]^n$.
- \mathcal{U} is *I-conservative* if for every $n \in \mathbb{N}^+$ and every \mathfrak{M} -coded sequence $\langle K_i : i < c \rangle$ of subsets of $[\overline{c}]^n$ there is some $X \in \mathcal{U}$ and some $d \in M$ with $I < d \leq c$ such that $\forall i < d$ X decides K_i , i.e., either $[X]^n \subseteq K_i$ or $[X]^n \subseteq [\overline{c}]^n \setminus K_i$.

Desirable Ultrafilters

Theorem. \$\mathcal{P}^{M}(\vec{c})\$ carries a nonprincipal ultrafilter \$\mathcal{U}\$ satisfying the following four properties :

(a) *U* is *I*-complete;

(b) *U* is canonically Ramsey;

(c) \mathcal{U} is *I*-tight;

(d) $\{Card^{\mathfrak{M}}(X) : X \in \mathcal{U}\}$ is downward cofinal in $M \setminus I$;

(e) \mathcal{U} is *I*-conservative.

Fundamental Theorem

- Theorem. Suppose I is a cut closed exponentiation in a countable model of PA,
 L is a linearly ordered set, and U satisfies the five properties of the previous theorem.
 One can use U to build a an elementary M^{*}_L of M that satisfies the following:
- (a) $I \subseteq_{e} \mathfrak{M}_{\mathbb{L}}$ and $SSy_{I}(\mathfrak{M}_{\mathbb{L}}) = SSy_{I}(\mathfrak{M})$.

(b) \mathbb{L} is a set of indiscernibles in $\mathfrak{M}^*_{\mathbb{L}}$;

(c) Every $j \in Aut(\mathbb{L})$ induces an automorphism $\hat{j} \in Aut(\mathfrak{M}^*_{\mathbb{L}})$ such that $j \mapsto \hat{j}$ is a group embedding of $Aut(\mathbb{L})$ into $Aut(\mathfrak{M}^*_{\mathbb{L}})$;

(d) If $j \in Aut(\mathbb{L})$ is nontrivial, then $I_{fix}(\hat{j}) = I$; (e) If $j \in Aut(\mathbb{L})$ is fixed point free, then

$$fix(\hat{j}) = M.$$

Combining Smoryński and Schmerl

- Theorem. Suppose I is a cut closed under exponentiation in a countable recursively saturated model M of PA, and M* is a cofinal countable elementary extension of M such that I ⊆_e M* with SSy_I(M) = SSy_I(M*). Then M and M* are isomorphic over I.
- Theorem. Suppose M is a countable recursively saturated model of PA and I is a cut of M that is closed under exponentiation. There is a group embedding j → ĵ from Aut(Q) into Aut(M) such that for every nontrivial j ∈ Aut(Q) the longest initial segment of M that is pointwise fixed by ĵ is I. Moreover, for every fixed point free j ∈ Aut(Q), the fixed point set of ĵ is isomorphic to M.

A Characterization of $I\Delta_0 + Exp + B\Sigma_1$

• $B\Sigma_1$ is the Σ_1 -collection scheme consisting of the universal closure of formulae of the form, where φ is a Δ_0 -formula:

 $[\forall x < a \exists y \ \varphi(x, y)] \rightarrow [\exists z \ \forall x < a \ \exists y < z \ \varphi(x, y)].$

- $I_{fix}(j)$ is the largest initial segment of the domain of j that is pointwise fixed by j
- **Theorem** The following two conditions are equivalent for a countable model \mathfrak{M} of the language of arithmetic:

(1) $\mathfrak{M} \models I \Delta_0 + B \Sigma_1 + Exp.$

(2) $\mathfrak{M} = I_{fix}(j)$ for some nontrivial automorphism j of an end extension \mathfrak{M}^* of \mathfrak{M} that satisfies $I\Delta_0$.

Strong Cuts and Arithmetic Saturation

- *I* is a *strong cut* of \mathfrak{M} if, for each function f whose graph is coded in \mathfrak{M} and whose domain includes *I*, there is some s in *M* such that for all $m \in M$, $f(m) \notin I$ iff s < f(m).
- **Theorem** (Kirby-Paris) The following are equivalent for a cut I of $\mathfrak{M} \models PA$:
- (a) I is strong in \mathfrak{M} .
- (b) $(\mathbf{I}, SSy_I(\mathfrak{M})) \models ACA_0.$
 - Proposition. A countable recursively saturated model of PA is arithmetically saturated iff N is a strong cut of M.

Key Results of Kaye-Kossak-Kotlarski

• **Theorem**. Suppose \mathfrak{M} is a countable recursively saturated model of PA.

(1) If \mathbb{N} is a strong cut of \mathfrak{M} , then there is some $j \in Aut(\mathfrak{M})$ such that every undefinable element of \mathfrak{M} is moved by j.

(2) If $I \prec_{e,strong} \mathfrak{M}$, then I is the fixed point set of some $j \in Aut(\mathfrak{M})$.

A Conjecture of Schmerl

- Conjecture (Schmerl). If N is a strong cut of countable recursively saturated model M of PA, then the isomorphism types of fixed point sets of automorphisms of M coincide with the isomorphism types of elementary substructures of M.
- Theorem (Kossak).

(1) The number of isomorphism types of fixed point sets of \mathfrak{M} is either 2^{\aleph_0} or 1, depending on whether \mathbb{N} is a strong cut of \mathfrak{M} , or not.

(2) Every countable model of *PA* is isomorphic to a fixed point set of some automorphism of some countable arithmetically saturated model of *PA* A New Ultrapower (1)

• Suppose $\mathfrak{M} \preceq \mathfrak{N}$, where $\mathfrak{M} \models PA^*$, I is a cut of both \mathfrak{M} and \mathfrak{N} , and I is strong in \mathfrak{N} (N.B., I need not be strong in \mathfrak{M}).

•
$$\mathcal{F} := \left({^{I}M} \right)^{\mathfrak{N}}.$$

- **Proposition.** There is an \mathcal{F} -Ramsey ultrafilter \mathcal{U} on $B(\mathcal{F})$ if M is countable.
- Theorem. One can build $\mathfrak{M}^* = \prod_{\mathcal{F},\mathcal{U},\mathbb{L}} \mathfrak{M}$, and a group embedding $j \mapsto \hat{j}$ of $Aut(\mathbb{Q})$ into $Aut(\mathfrak{M}^*)$.

A New Ultrapower (2)

• Theorem.

(a) $\mathfrak{M} \prec \mathfrak{M}^*$.

(b) I is an initial segment of \mathfrak{M}^* , and $B(\mathcal{F}) = SSy_I(\mathfrak{M}^*)$.

(c) For every \mathcal{L} -formula $\varphi(x_1, \dots, x_n)$, and every $(l_1, \dots, l_n) \in [\mathbb{L}]^n$, the following two conditions are equivalent:

(i) $\mathfrak{M}^* \vDash \varphi(l_1, l_2, \cdots, l_n);$

(ii) $\exists H \in \mathcal{U}$ such that for all $(a_1, \dots, a_n) \in [H]^n$, $\mathfrak{M} \models \varphi(a_1, \dots, a_n)$.

(d) If $j \in Aut(\mathbb{Q})$ is fixed point free, then $fix(\hat{j}) = M$.

(e) If $j \in Aut(\mathbb{Q})$ is expansive on \mathbb{Q} , then \hat{j} is expansive on $M^* \setminus \overline{M}$.

Proof of Schmerl's Conjecture (1)

Theorem Suppose M₀ is an elementary submodel of a countable arithmetically saturated model M of PA. There is M₁ ≺ M with M₀ ≅ M₁ and an embedding j ↦ ĵ of Aut(Q) into Aut(M), such that fix(ĵ) = M₁ for every fixed point free j ∈Aut(Q).

Proof:

(1) Let
$$\mathcal{F} := (^{\mathbb{N}}M_0)^{\mathfrak{M}}$$
.

(2) Build an ultrafilter \mathcal{U} on $B(\mathcal{F})$ that is \mathcal{F} -Ramsey.

(3)
$$\mathfrak{M}^* := \prod_{\mathcal{F},\mathcal{U},\mathbb{Q}} \mathfrak{M}_0.$$

Proof of Schmerl's Conjecture (2)

(4) \mathfrak{M}^* is recursively saturated (key idea: \mathfrak{M}^* has a satisfaction class).

(5) Therefore $\mathfrak{M}^* \cong \mathfrak{M}$.

(6) Let θ be an isomorphism between \mathfrak{M}^* and \mathfrak{M} and let \mathfrak{M}_1 be the image of \mathfrak{M}_0 under θ .

(7) The embedding $j \xrightarrow{\lambda} \hat{j}$ of $Aut(\mathbb{Q})$ into $Aut(\mathfrak{M}^*)$ has the property that $fix(\hat{j}) = M_0$ for every fixed point free $j \in Aut(\mathbb{Q})$.

(8) The desired embedding $j \xrightarrow{\alpha} \tilde{j}$ by:

$$\alpha = \theta^{-1} \circ \lambda \circ \theta.$$

This is illustrated by the following commutative diagram: