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Skolem-Gaifman Ultrapowers (1)

• If M has definable Skolem functions, then
we can form the Skolem ultrapower

M∗ =
∏

F ,U
M

as follows:

(a) Let B be the Boolean algebra of M-
definable subsets of M , and U be an ultra-
filter over B.

(b) Let F be the family of functions from
M into M that are parametrically definable
in M.

(c) The universe of M∗ is

{[f ] : f ∈ F},

where

f ∼ g ⇐⇒ {m ∈ M : f(m) = g(m)} ∈ U



Skolem-Gaifman Ultrapowers (2)

• Theorem (MacDowell-Specker) Every model
of PA has an elementary end extension.

• Proof: Construct U with the property that
every definable map with bounded range is
constant on a member of U (this is simi-
lar to building a p-point in βω using CH).
Then,

M ≺e
∏
F ,U

M..

• For each parametrically definable X ⊆ M,

and m ∈ M,

(X)m = {x ∈ M : 〈m, x〉 ∈ X}.

• U is an iterable ultrafilter if for every X ∈ B,
{m ∈ M : (X)m ∈ U} is definable.



Skolem-Gaifman Ultrapowers (3)

• Theorem (Gaifman)

(1) If U is iterable, and L is a linear order,

then

M ≺e,cons
∏

F ,U ,L
M = M∗

L.

(2) Moreover, if U is a ‘Ramsey ultrafilter’

over M, then there is isomorphism

j 7−→ ̂

between Aut(L) and Aut(M∗
L;M) such that

fix( ̂) = M

for every fixed-point-free j.



Schmerl’s Generalization

• Theorem The following are equivalent for

a group G.

(a) G ≤ Aut(L) for some linear order L.

(b) G is left-orderable.

(c) G ∼= Aut(A) for some linearly ordered

structure A = (A, <, · · ·).

(d) G ∼= Aut(M) for some M ² PA.

(e) G ∼= Aut(F) for some ordered field F.

• Schmerl’s methodology: Using a combina-

torial theorem of Abramson-Harrington/Neštěril-

Rödl to refine Gaifman’s techniques.



Countable Recursively Saturated Models (1)

• Theorem (Schlipf). Every countable re-

cursively saturated model has continuum

many automorphisms.

• Theorem. (Smoryński) If M is a count-

able recursively saturated model of PA and

I is a cut of M that is closed under expo-

nentiation, then for some j ∈ Aut(M), I

is the longest initial segment of M that is

pointwise fixed by j.

• Key Lemma (also discovered by Kotlarski

and Vencovská): Suppose a, b, c ∈ M are

such that ∀x < 22c
, (M, x, a) ≡ (M, x, b).

Then ∀a′ ∈ M ∃b′ ∈ M such that ∀x < c,

(M, x, a, a′) ≡ (M, x, b, b′).



Countable Recursively Saturated Models (2)

• Theorem (Schmerl)

(1) If a countable recursively saturated model

M is equipped with a ‘β-function” β, then

for any countable linear order L without a

last element, M is generated by a set of

indiscernibles of order-type L (via β).

(2) Consequently, there is a group embed-

ding from Aut(Q) into Aut(M).

• Question. Can Smoryński’s theorem be

combined with part (2) of Schmerl’s theo-

rem?



Paris-Mills Ultrapowers

• The index set is of the form

c = {0,1, · · ·, c− 1}

for some nonstandard m in M.

• The family of functions used, denoted F is
(cM)M.

• The Boolean algebra at work will be de-
noted PM(c).

• This type of ultrapower was first consid-
ered by Paris and Mills to show that one
can arrange a model of PA in which there
is an externally countable nonstandard in-
teger H such that the external cardinality
of Superexp(2, H) is of any prescribed infi-
nite cardinality.



More on Ultrafilters

• A filter U ⊆ PM(c) is canonically Ramsey

if for every f ∈ Fc, and every n ∈ N+, if

f : [c]n → M, then there is some H ∈ U
such that H is f-canonical;

• U is I-tight if for every f ∈ Fc, and every

n ∈ N+, if f : [c]n → M, then there is some

H ∈ U such either f is constant on H, or

there is some m0 ∈ M\I such that f(x) >

m0 for all x ∈ [H]n.

• U is I-conservative if for every n ∈ N+ and

every M-coded sequence 〈Ki : i < c〉 of sub-

sets of [c]n there is some X ∈ U and some

d ∈ M with I < d ≤ c such that ∀i < d

X decides Ki, i.e., either [X]n ⊆ Ki or

[X]n ⊆ [c]n\Ki.



Desirable Ultrafilters

• Theorem. PM(c) carries a nonprincipal

ultrafilter U satisfying the following four

properties :

(a) U is I-complete;

(b) U is canonically Ramsey;

(c) U is I-tight;

(d) {CardM(X) : X ∈ U} is downward cofinal

in M\I;

(e) U is I-conservative.



Fundamental Theorem

• Theorem. Suppose I is a cut closed ex-
ponentiation in a countable model of PA,
L is a linearly ordered set, and U satisfies
the five properties of the previous theorem.
One can use U to build a an elementary M∗

L
of M that satisfies the following:

(a) I ⊆e ML and SSyI(ML) = SSyI(M).

(b) L is a set of indiscernibles in M∗
L;

(c) Every j ∈ Aut(L) induces an automorphism
ĵ ∈ Aut(M∗

L) such that j 7→ ĵ is a group em-
bedding of Aut(L) into Aut(M∗

L);

(d) If j ∈ Aut(L) is nontrivial, then Ifix(ĵ) = I;

(e) If j ∈ Aut(L) is fixed point free, then

fix( ĵ) = M .



Combining Smoryński and Schmerl

• Theorem. Suppose I is a cut closed un-

der exponentiation in a countable recur-

sively saturated model M of PA, and M∗
is a cofinal countable elementary extension

of M such that I ⊆e M∗ with SSyI(M) =

SSyI(M
∗). Then M and M∗ are isomorphic

over I.

• Theorem. Suppose M is a countable re-

cursively saturated model of PA and I is a

cut of M that is closed under exponentia-

tion. There is a group embedding j 7−→ ̂

from Aut(Q) into Aut(M) such that for ev-

ery nontrivial j ∈ Aut(Q) the longest initial

segment of M that is pointwise fixed by

̂ is I. Moreover, for every fixed point free

j ∈ Aut(Q), the fixed point set of ̂ is iso-

morphic to M.



A Characterization of I∆0 + Exp + BΣ1

• BΣ1 is the Σ1-collection scheme consisting

of the universal closure of formulae of the

form, where ϕ is a ∆0-formula:

[∀x < a ∃y ϕ(x, y)] → [∃z ∀x < a ∃y < z ϕ(x, y)].

• Ifix(j) is the largest initial segment of the

domain of j that is pointwise fixed by j

• Theorem The following two conditions are

equivalent for a countable model M of the

language of arithmetic:

(1) M ² I∆0 + BΣ1 + Exp.

(2) M = Ifix(j) for some nontrivial auto-

morphism j of an end extension M∗ of M

that satisfies I∆0.



Strong Cuts and Arithmetic Saturation

• I is a strong cut of M if, for each function

f whose graph is coded in M and whose

domain includes I, there is some s in M

such that for all m ∈ M, f(m) /∈ I iff s <

f(m).

• Theorem (Kirby-Paris) The following are

equivalent for a cut I of M ² PA :

(a) I is strong in M.

(b) (I, SSyI(M)) ² ACA0.

• Proposition. A countable recursively sat-

urated model of PA is arithmetically satu-

rated iff N is a strong cut of M.



Key Results of Kaye-Kossak-Kotlarski

• Theorem. Suppose M is a countable re-

cursively saturated model of PA.

(1) If N is a strong cut of M, then there is

some j ∈ Aut(M) such that every undefinable

element of M is moved by j.

(2) If I ≺e,strong M, then I is the fixed point

set of some j ∈ Aut(M).



A Conjecture of Schmerl

• Conjecture (Schmerl). If N is a strong cut

of countable recursively saturated model M

of PA, then the isomorphism types of fixed

point sets of automorphisms of M coincide

with the isomorphism types of elementary

substructures of M.

• Theorem (Kossak).

(1) The number of isomorphism types of fixed

point sets of M is either 2ℵ0 or 1, depending

on whether N is a strong cut of M, or not.

(2) Every countable model of PA is isomorphic

to a fixed point set of some automorphism of

some countable arithmetically saturated model

of PA



A New Ultrapower (1)

• Suppose M ¹ N, where M ² PA∗, I is a

cut of both M and N, and I is strong in N

(N.B., I need not be strong in M).

• F :=
(
IM

)N
.

• Proposition. There is an F-Ramsey ultra-

filter U on B(F) if M is countable.

• Theorem. One can build M∗ =
∏

F ,U ,L
M,

and a group embedding j 7→ ̂ of Aut(Q)

into Aut(M∗).



A New Ultrapower (2)

• Theorem.

(a) M ≺ M∗.

(b) I is an initial segment of M∗, and B(F) =
SSyI(M

∗).

(c) For every L-formula ϕ(x1, ···, xn), and every
(l1, · · ·, ln) ∈ [L]n, the following two conditions
are equivalent:

(i) M∗ ² ϕ(l1, l2, · · ·, ln);

(ii) ∃H ∈ U such that for all (a1, · · ·, an) ∈ [H]n,
M ² ϕ(a1, · · ·, an).

(d) If j ∈ Aut(Q) is fixed point free, then
fix(̂) = M.

(e) If j ∈ Aut(Q) is expansive on Q, then ̂ is
expansive on M∗\M.



Proof of Schmerl’s Conjecture (1)

• Theorem Suppose M0 is an elementary

submodel of a countable arithmetically sat-

urated model M of PA. There is M1 ≺ M

with M0
∼= M1 and an embedding j 7→ ̂ of

Aut(Q) into Aut(M), such that fix(̂) = M1

for every fixed point free j ∈Aut(Q).

Proof:

(1) Let F := (NM0)
M.

(2) Build an ultrafilter U on B(F) that is F-

Ramsey.

(3) M∗ :=
∏

F ,U ,Q
M0.



Proof of Schmerl’s Conjecture (2)

(4) M∗ is recursively saturated (key idea: M∗
has a satisfaction class).

(5) Therefore M∗ ∼= M.

(6) Let θ be an isomorphism between M∗ and

M and let M1 be the image of M0 under θ.

(7) The embedding j
λ7−→ ĵ of Aut(Q) into

Aut(M∗) has the property that fix(̂) = M0 for

every fixed point free j ∈ Aut(Q).



(8) The desired embedding j
α7−→ j̃ by:

α = θ−1 ◦ λ ◦ θ.

This is illustrated by the following commuta-

tive diagram:

M
j̃=α(j)−→ M

↓θ ↑θ−1

M∗ ĵ=λ(j)−→ M∗


