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Abstract. Finite set theory, here denoted ZFfin, is the theory ob-
tained by replacing the axiom of infinity by its negation in the usual
axiomatization of ZF (Zermelo-Fraenkel set theory). An ω-model
of ZFfin is a model in which every set has at most finitely many
elements (as viewed externally). Mancini and Zambella (2001) em-
ployed the Bernays-Rieger method of permutations to construct a
recursive ω-model of ZFfin that is nonstandard (i.e., not isomor-
phic to the hereditarily finite sets Vω). In this paper we initiate
the metamathematical investigation of ω-models of ZFfin. In par-
ticular, we present a new method for building ω-models of ZFfin

that leads to a perspicuous construction of recursive nonstandard
ω-models of ZFfin without the use of permutations. Furthermore,
we show that every recursive model of ZFfin is an ω-model. The
central theorem of the paper is the following:

Theorem A. For every graph (A,F ), where F is a set of un-
ordered pairs of A, there is an ω-model M of ZFfin whose universe
contains A and which satisfies the following conditions:

(1) (A,F ) is definable in M;
(2) Every element of M is definable in (M, a)a∈A;
(3) If (A,F ) is pointwise definable, then so is M;
(4) Aut(M) ∼= Aut(A,F ).

Theorem A enables us to build a variety of ω-models with special
features, in particular:

Corollary 1. Every group can be realized as the automorphism
group of an ω-model of ZFfin.

Corollary 2. For each infinite cardinal κ there are 2κ rigid non-
isomorphic ω-models of ZFfin of cardinality κ.

Corollary 3. There are continuum-many nonisomorphic point-
wise definable ω-models of ZFfin.

We also establish that PA (Peano arithmetic) and ZFfin are not bi-
interpretable by showing that they differ even for a much coarser
notion of equivalence, to wit sentential equivalence.
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1. INTRODUCTION

In 1953, Kreisel [Kr] and Mostowski [Mos] independently showed
that certain finitely axiomatizable systems of set theory formulated in
an expansion of the usual language {∈} of set theory do not possess
any recursive models. This result was improved in 1958 by Rabin [Ra]
who found a “familiar” finitely axiomatizable first order theory that
has no recursive model: Gödel-Bernays1 set theory GB without the ax-
iom of infinity (note that GB can be formulated in the language {∈}
with no extra symbols). These discoveries were overshadowed by Ten-
nenbaum’s celebrated 1961 theorem that characterizes the standard
model of PA (Peano arithmetic) as the only recursive model of PA up
to isomorphism, thereby shifting the focus of the investigation of the
complexity of models from set theory to arithmetic. We have come
a long way since Tennenbaum’s pioneering work in understanding the
contours of the “Tennenbaum boundary” that separates those frag-
ments of PA that have a recursive nonstandard model (such as IOpen)
from those which do not (such as I∃1), but the study of the complexity
of models of arithmetic and its fragments remains a vibrant research
area with many intriguing open questions.2

The point of departure for the work presented here is Mancini and
Zambella’s 2001 paper [MZ] that focuses on Tennenbaum phenomena in
set theory. Mancini and Zambella introduced a weak fragment (dubbed
KPΣ1

3) of Kripke-Platek set theory KP, and showed that the only re-
cursive model of KPΣ1 up to isomorphism is the standard one, i.e.,
(Vω,∈), where Vω is the set of hereditarily finite sets. In contrast, they
used the Bernays-Rieger 4 permutation method to show that the theory

1We have followed Mostowski’s lead in our adoption of the appellation GB, but
some set theory texts refer to this theory as BG. To make matters more confusing,
the same theory is also known in the literature as VNB (von Neumann-Bernays)
and NBG (von Neumann-Bernays-Gödel).

2See, e.g., the papers by Kaye [Ka] and Schmerl [Sch-2] in this volume, and
Mohsenipour’s [Moh].

3The axioms of KPΣ1 consist of Extensionalty, Pairs, Union, Foundation, ∆0-
Comprehension, ∆0-Collection, and the scheme of ∈-Induction (defined in part (f) of
Remark 2.2) only for Σ1 formulas . Note that KPΣ1 does not include the axiom of
infinity.

4In [MZ] this method is incorrectly referred to as the Fraenkel-Mostowski per-
mutation method, but this method was invented by Bernays (announced in [Be-1,
p. 9], and presented in [Be-2]) and fine-tuned by Rieger [Ri] in order to build mod-
els of set theory that violate the regularity (foundation) axiom, e.g., by containing
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ZFfin obtained by replacing the axiom of infinity by its negation in the
usual axiomatization of ZF (Zermelo-Fraenkel set theory) has a recur-
sive nonstandard model. The Mancini-Zambella recursive nonstandard
model also has the curious feature of being an ω-model in the sense that
every element of the model, as viewed externally, has at most finitely
many members, a feature that caught our imagination and prompted
us to initiate the systematic investigation of the metamathematics of
ω-models of ZFfin.

The plan of the paper is as follows. Preliminaries are dealt with
in Section 2, in which we review key definitions, establish notation,
and discuss a host of background results. In Section 3 we present a
simple robust construction of ω-models of ZFfin (Theorem 3.4), a con-
struction that, among other things, leads to a perspicuous proof of the
existence of ω-models of ZFfin in every infinite cardinality (Corollary
3.7), and the existence of infinitely many nonisomorphic recursive non-
standard ω-models of ZFfin without the use of permutations (Corollary
3.9, Remark 3.10(b)). In the same section, we also show that ZFfin is
not completely immune to Tennenbaum phenomena by demonstrating
that every recursive model of ZFfin is an ω-model (Theorem 3.11). In
Section 4 we fine-tune the method of Section 3 to show the existence of
a wealth of nonisomorphic ω-models of ZFfin with special features. The
central theorem of Section 4 is Theorem 4.2 which shows that every
graph can be canonically coded into an ω-model of ZFfin. Coupled with
classical results in graph theory, this result yields many corollaries. For
example, every group (of any cardinality) can be realized as the auto-
morphism group of an ω-model of ZFfin (Corollary 4.4), and there are
continuum-many nonisomorphic pointwise definable ω-models of ZFfin

(Corollary 4.7). In Section 5 we establish that PA (Peano arithmetic)
and ZFfin are not bi-interpretable by showing that they differ even for a
much coarser notion of equivalence, to wit sentential equivalence (The-
orem 5.1). This complements the work of Kaye-Wong5 [KW] on the
definitional equivalence (or synonymy) of PA and ZFfin +“every set has
a transitive closure”. We close the paper with Section 6, in which we
present open questions and concluding remarks.

We also wish to take this opportunity to thank the anonymous referee
for helpful comments and corrections, and Robert Solovay for catching
a blooper in an earlier draft of this paper.

sets x such that x = {x}. In contrast, the Fraenkel-Mostowski method is used to
construct models of set theory with atoms in which the axiom of choice fails.

5See Remark 2.2(f) for more detail concerning the Kaye-Wong paper.
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2. PRELIMINARIES

In this section we recall some key definitions, establish notation, and
review known results.

Definitions/Observations 2.1.

(a) Models of set theory are directed graphs6 (hereafter: digraphs), i.e.,
structures of the form M = (M,E), where E is a binary relation on M
that interprets ∈ . We often write xEy as a shorthand for 〈x, y〉 ∈ E.
For c ∈M , cE is the set of “elements” of c, i.e.,

cE := {m ∈M : mEc}.

M is nonstandard if E is not well-founded, i.e., if there is a sequence
〈cn : n ∈ ω〉 of elements of M such that cn+1Ecn for all n ∈ ω.

(b) We adopt the terminology of Baratella and Ferro [BF] of using EST
(elementary set theory) to refer to the following theory of sets

EST := Extensionality + Empty Set + Pairs + Union + Replacement.

(c) The theory ZFfin is obtained by replacing the axiom of infinity by
its negation in the usual axiomatization of ZF (Zermelo-Fraenkel set
theory). More explicitly:

ZFfin := EST + Power set + Regularity7+ ¬Infinity.

Here Infinity is the usual axiom of infinity, i.e.,

Infinity := ∃x
(
∅ ∈ x ∧ ∀y (y ∈ x→ y+ ∈ x)

)
,

where y+ := y ∪ {y}.

(d) Tran(x) is the first order formula that expresses the statement “x
is transitive”, i.e.,

Tran(x) := ∀y∀z (z ∈ y ∈ x→ z ∈ x).

(e) TC(x) is the first order formula that expresses the statement “the
transitive closure of x is a set”, i.e.,

TC(x) := ∃y (x ⊆ y ∧ Tran(y)).

Overtly, the above formula just says that some superset of x is transi-
tive, but it is easy to see that TC(x) is equivalent within EST to the

6We will also have ample occasion to deal with (undirected) graphs, i.e., struc-
tures of the form (A,F ), where F is a set of unordered pairs from A.

7The regularity axiom is also known as the foundation axiom, stating that every
nonempty set has an ∈-minimal element.
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following statement expressing “there is a smallest transitive set that
contains x”

∃y (x ⊆ y ∧ Tran(y) ∧ ∀z ((x ⊆ z ∧ Tran(z)) → y ⊆ z)).

(f) TC denotes the transitive closure axiom

TC := ∀x TC(x).

Let Vω be the set of hereditarily finite sets. It is easy to see that
ZFfin + TC holds in Vω. However, it has long been known8 that ZFfin 0
TC.

(g) N(x) [read as “x is a natural number”] is the formula

Ord(x) ∧ ∀y∈x+ (y 6= ∅ → ∃z (Ord(z) ∧ y = z+)),

where Ord(x) expresses “x is a (von Neumann) ordinal”, i.e., “x is a
transitive set that is well-ordered by ∈”. It is well-known that with
this interpretation, the full induction scheme IndN, consisting of the
universal closure of formulas of the following form is provable within
EST: (

θ(0) ∧ ∀x
(
N(x) ∧ θ(x) → θ(x+)

))
→ ∀x (N(x) → θ(x)) .

Note that θ is allowed to have suppressed parameters, and these param-
eters are not required to lie in N. Coupled with the fact that ZFfin is a
sequential theory9, this shows that for each positive integer n, there is a
formula Trn(x) such that, provably in ZFfin, Trn(x) is a truth-predicate
for the class of formulas Qn with at most n alternations of quanti-
fiers. Coupled with the fact that any formula in Qn that is provable in
predicate logic has a proof all of whose components lie in Qn (which
follows from Herbrand’s Theorem [HP, Thm 3.30, Ch.III]), this shows
that ZFfin is essentially reflexive, i.e., any consistent extension of ZFfin

proves the consistency of each of its finite subtheories. Therefore ZFfin

is not finitely axiomatizable.

8Hájek-Vopĕnka [HV] showed that TC is not provable in the theory GBfin, which
is obtained from GB (Gödel-Bernays theory of classes) by replacing the axiom of
infinity by its negation. Later Hauschild [Ha] gave a direct construction of a model
of ZFfin + ¬TC.

9Sequential theories are those that are equipped with a “β-function” for coding
sequences. More specifically, using 〈x, y〉 for the usual Kuratowski ordered pair of x
and y, the function β(x, y) defined via β(x, y) = z iff 〈x, z〉 ∈ y, conveniently serves
in EST as a β-function (when y is restricted to “functional” sets, i.e., y should
contain at most one ordered pair 〈x, z〉 for a given x).
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(h) For a model M � EST, and x ∈ M, we say that x is N-finite if
there is a bijection in M between x and some element of NM. Let:

(Vω)M := {m ∈M : M � “TC(m) and m is N-finite”}
It is easy to see that

(Vω)M � ZFfin + TC.

This provides an interpretation of the theory ZFfin+TC within EST. On
the other hand, the existence of recursive nonstandard models of ZFfin

shows that, conversely, ZFfin+¬TC is also interpretable in EST. One can
show that the above interpretation of ZFfin + TC within EST is faithful
(i.e., the sentences that are provably true in the interpretation are
precisely the logical consequences of ZFfin +TC), but that the Mancini-
Zambella interpretation [MZ, Theorem 3.1] of ZFfin +¬TC within EST,
is not faithful10.

(i) τ(n, x) is the term expressing “the n-th approximation to the tran-
sitive closure of {x} (where n is a natural number)”. Informally speak-
ing,

• τ(0, x) = {x};
• τ(n+ 1, x) = τ(n, x) ∪ {y : ∃z (y ∈ z ∈ τ(n, x)}.

Thanks to the coding apparatus of EST for dealing with finite se-
quences, and the provability of IndN within EST (both mentioned earlier
in part (g)), the above informal recursion can be formalized within EST
to show that

EST ` ∀n∀x (N(n) → ∃!y (τ(n, x) = y)).

This leads to the following important observation:

(j) Even though the transitive closure of a set need not form a set in
EST (or even in ZFfin), for an ω-model M the transitive closure τ(c) of
{c} is first order definable via:

τM(c) := {m ∈M : M � ∃n (N(n) ∧m ∈ τ(n, c))}.
This shows that, in the worst case scenario, transitive closures behave
like proper classes in ω-models of M. Note that if the set NM of nat-
ural numbers of M contains nonstandard elements, then the external
transitive closure ⋃

n∈ω

τM(n, c)

10Because the interpretation provably satisfies the sentence “the universe can be
built from the transitive closure of an element whose transitive closure forms an
ω∗-chain”, a sentence that is not a theorem of ZFfin + ¬TC.
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might be a proper subset of the M-transitive closure τM(c). However,
if M is an ω-model, then the M-transitive closure of {c} coincides with
the external transitive closure of {c}.

Remark 2.2.

(a) Vopĕnka [Vo-2] has shown that ZFfin\ {Regularity} is provable from
the fragment (dubbed VF in [BF]) of AST (Alternative Set Theory),
whose axioms consist of Extensionality, Empty set, Adjunction (given sets
x and y, we have that x∪{y} exists), and the schema of Set-induction,
consisting of the universal closure of formulas of the form (θ is allowed
to have suppressed parameters)

(θ(0) ∧ ∀x∀y (θ(x) → θ(x ∪ {y}))) → ∀x θ(x).

(b) Besides ¬Infinity there are at least two other noteworthy first order
statements that can be used to express “every set is finite”:

• FinN : Every set is N-finite.
• FinD : Every set is Dedekind-finite, i.e., no set is equinumerous

to a proper subset of itself.

It is easy to see that EST proves FinN → FinD → ¬ Infinity. By a
theorem of Vopĕnka [Vo-1], Power set and the well-ordering theorem
(and therefore the axiom of choice) are provable within EST + FinN
(see [BF, Theorem 5] for an exposition).

(c) Kunen [BF, Sec. 7] has shown the consistency of the theory EST+
¬Infinity + ¬FinN using the Fraenkel-Mostowski permutations method.

(d) In contrast with Kunen’s aforementioned result, FinN is provable
within ZFfin\ {Regularity} (i.e., within EST + Powerset + ¬ Infinity).
To see this, work in ZFfin\ {Regularity} and suppose to the contrary
that there is an element x that is not N-finite. By an easy induction,
we find that for every natural number n there is a subset y of x that is
equinumerous with n. Now we define the function F on the powerset
of x by:

F (y) := n, if n is a natural number that is equinumerous with y;
otherwise F (y) = 0.

It is easy to see that the range of F is ω. Hence by Replacement, ω is
a set. Quod non.

(e) As mentioned earlier in part (a), VF ` ZFfin\ {Regularity}. The
provability of both FinN and IndN in ZFfin can be used to show that
VF + Regularity and EST + FinN + Regularity axiomatize the same first
order theory as ZFfin.
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(f) As observed by Kaye and Wong [KW, Prop.12] within EST, the
principle TC is equivalent to the scheme of ∈-Induction consisting of
statements of the following form (θ is allowed to have suppressed pa-
rameters)

∀y (∀x∈y θ (x) → θ(y)) → ∀z θ(z).
In the same paper Kaye and Wong showed the following strong form of
bi-interpretability11 between PA and ZFfin + TC, known as definitional
equivalence (or synonymity, in the sense of [Vi-2, Sec.4.8.2]) by showing
that:

(1) TC holds in the Ackermann interpretation Ack of ZFfin within PA,
i.e., Ack : ZFfin + TC → PA; and

(2) There is an interpretation B : PA → ZFfin +TC such that Ack ◦B =
idPA and B ◦ Ack = idZFfin+TC.

The above result suggests that, contrary to a popular misconception,
PA might not be bi-interpretable with ZFfin alone. Indeed, we shall
establish a strong form of the failure of the bi-interpretability between
PA and ZFfin in Theorem 5.1. Note that, in contrast, by a very general
result12 in interpretability theory, PA and ZFfin are mutually faithfully
interpretable.

3. BUILDING ω-MODELS

Definition 3.1. Suppose M is a model of EST. M is an ω-model if
|xE| is finite for every x ∈M satisfying M � “x is N-finite”.

It is easy to see that M is an ω-model iff (N,∈)M is isomorphic to the
standard natural numbers.13 This observation can be used to show that
ω-models of ZFfin are precisely the models of the second order theory
ZF2

fin obtained from ZFfin by replacing the replacement scheme by its
second order analogue.

11See the paragraph preceding Theorem 3.12 for more detail on bi-
interpretability.

12See [Vi-1, Lemma 5.4] for the precise formulation of this result in a general
setting, which shows that any Σ0

1-sound theory can be faithfully interpreted in a
sufficiently strong theory. Visser’s result extends earlier work of Lindström [Li, Ch.
6, Sec. 2, Thm 13] which dealt with a similar phenomenon in the specific confines
of theories extending PA.

13Note that there are really two salient notions of ω-model, to wit the notion
we defined here could be called ωN-model, and the notion defined using ‘Dedekind-
finite’ instead of ‘N-finite’ may be called ωD-model. For our study of ZFfin the
choice is immaterial, since ZFfin proves that every set is N-finite (see part (d) of
Remark 2.2).
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The following proposition provides a useful graph-theoretic charac-
terization of ω-models of ZFfin. Note that even though ZFfin is not
finitely axiomatizable,14 the equivalence of (a) and (b) of Proposition
3.2 shows that there is a single sentence in the language of set theory
whose ω-models are precisely ω-models of ZFfin.

• Recall that a vertex x of a digraph G := (X,E) has finite
in-degree if xE is finite; and G is acyclic if there is no finite
sequence x1 E x2 · · · E xn−1 E xn in G with x1 = xn.

Proposition 3.2. The following three conditions are equivalent for a
digraph G := (X,E):

(a) G is an ω-model of ZFfin.

(b) G is an ω-model of Extensionality, Empty set, Regularity, Adjunction
and ¬ Infinity.

(c) G satisfies the following four conditions:
(i) E is extensional;
(ii) Every vertex of G has finite in-degree;
(iii) G is acyclic; and
(iv) G has an element of in-degree 0, and for all positive n ∈ ω,

(X,E) � ∀x1 · · · ∀xn ∃y ∀z (zEy ↔
n∨

i=1

z = xi).

Proof:
(a) ⇒ (b): Trivial.

(b) ⇒ (c): Assuming (b), (i) and (ii) are trivially true. (iv) is an
easy consequence of Empty set and n-applications of Adjunction. To
verify (iii), suppose to the contrary that x1 E x2 · · · Exn−1 E xn is
a cycle in G with x1 = xn. By (iv), there is an element y ∈ X with
yE = {xi : 1 ≤ i ≤ n}. This contradicts Regularity since such a y has
no minimal “element”.

(c) ⇒ (a): Routine, but we briefly comment on the verification of Reg-
ularity, which is accomplished by contradiction: if x is a nonempty set
with no minimal element, then there exists an external infinite sequence
〈xn : n ∈ ω〉 of elements of c such that xn+1 E xn for all n ∈ ω. In-
voking statement (ii) of (c), this shows that there are xm and xn with
m < n such that xm = xn, which contradicts condition (iii) of (c). �

14See 2.1(g)
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The following list of definitions prepares the way for the first key theo-
rem of this section (Theorem 3.4), which will enable us to build plenty
of ω-models of ZFfin.

Definition 3.3. Suppose G := (X,E) is an extensional, acyclic di-
graph, all of whose vertices have finite in-degree.

(a) A subset S of X is said to be coded in G if there is some x ∈ X
such that S = xE.

(b) D(G) := {S ⊆ X : S is finite and S is not coded in G}. We shall
refer to D(G) as the deficiency set of G.

(c) The infinite sequence of digraphs

〈Vn(G) : n ∈ ω〉 ,
where Vn(G) := (Vn(G), En(G)) , is built recursively using the following
clauses15:

• V0(G) := X; E0(G) := E;

• Vn+1(G) := Vn(G) ∪D(Vn(G));

• En+1(G) := En(G) ∪ {〈x, S〉 ∈ Vn(G)×D(Vn(G)) : x ∈ S}.

(d) Vω(G) := (Vω(G), Eω(G)) , where

Vω(G) :=
⋃
n∈ω

Vn(G), Eω(G) :=
⋃
n∈ω

En(G).

Theorem 3.4. If G := (X,E) is an extensional, acyclic digraph, all
of whose vertices have finite in-degree, then Vω(G) is an ω-model of
ZFfin.

Proof: We shall show that Vω(G) satisfies the four conditions of (c)
of Proposition 3.2. Before doing so, let us make an observation that is
helpful for the proof, whose verification is left to the reader (footnote
15 comes handy here).

Observation 3.4.1. For each n ∈ ω, Vn+1(G) “end extends” Vn(G),
i.e., if aEn+1 b and b ∈ Vn(G), then a ∈ Vn(G).

It is easy to see that extensionality is preserved in the passage from
Vn(G) to Vn+1(G). By the above observation, at no point in the con-
struction of Vω(G) a new member is added to an old member, which
shows that extensionality is preserved in the limit. It is also easy to

15Since we want the elements of X to behave like urelements, something could
go wrong with this definition if some vertex happens to be a finite set of vertices,
or a finite set of finite sets of vertices, etc. A simple way to get the desired effect is
to replace X with X∗ = {{{x}, X} : x ∈ X} . Then X∗ ∩D(Vn(G)) = ∅ holds for
all n ∈ ω, and all digraphs G with vertex-set X∗.
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see that every vertex of Vω(G) has finite in-degree. To verify that
Vω(G) is acyclic it suffices to check that each finite approximation
Vn(G) is acyclic, so we shall verify that it is impossible for Vn+1(G) to
have a cycle and for Vn(G) to be acyclic. So suppose there is a cycle
〈si : 1 ≤ i ≤ k〉 in Vn+1(G), and Vn(G) is acyclic. Then by Observation
3.4.1, for some i,

si ∈ Vn+1(G) \ Vn(G).

This implies that si is a member of the deficiency set of Vn(G), and
so si ⊆ Vn(G). But for j = i + 1 (mod k), we have si En+1 sj. This
contradicts the definition of En+1, thereby completing our verification
that G is acyclic. �

Remark 3.5.

(a) The proof of Theorem 3.4 makes it clear that G is end extended
by Vω(G); and every element of Vω(G) is first order definable in the
structure (Vω(G), c)c∈X .

(b) Recall from part (i) of Definition 2.1 that τ(n, c) denotes the n-th
approximation to the transitive closure τ(c) of {c}. For any c ∈ Vω(G),
a tail of τ(n, c) lies in G, i.e., τ(c)\τ(n, c) ⊆ G for sufficiently large n.

Example 3.6.

(a) For every transitive S ⊆ Vω, Vω(S,∈) ∼= (Vω,∈).

(b) Let Gω := (ω, {〈n+ 1, n〉 : n ∈ ω}) . Vω(Gω) is our first concrete
example of a nonstandard ω-model of ZFfin.

Corollary 3.7. ZFfin has ω-models in every infinite cardinality.

Proof: For any (finite or infinite) set I, and any digraph G = (X,E),
let I ×G := (I ×X,F ), where

〈i, x〉F 〈j, y〉 ⇔ i = j ∧ xEy.
Note that I×G is the disjoint union of |I| copies of G. It is easy to see
that if G is an extensional, acyclic digraph, all of whose vertices have
finite in-degree, and G has no vertex v with vE = ∅, then I ×G shares
the same features. Therefore if Gω is as in Example 3.6(b), and I is
infinite, then Vω(I×Gω) is an ω-model of ZFfin of the same cardinality
as I. �

Remark 3.8. Corollary 3.7 shows that in contrast with ZFfin + TC,
within ZFfin there is no definable bijection between the universe and
the set of natural numbers. Furthermore, since Vω({0, 1}×Gω) has an
automorphism of order 2, there is not even a definable linear ordering
of the universe available in ZFfin.
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We need to introduce a key definition before stating the next result:

• A digraph G = (ω,E) is said to be highly recursive if (1) for
each n ∈ ω, nE is finite; (2) The map n 7→ c(nE) is recursive,
where c is a canonical code16 for nE; and (3) {c(nE) : n ∈ ω} is
recursive.

Corollary 3.9. ZFfin has nonstandard highly recursive ω-models.

Proof: The constructive nature of the proof of Theorem 3.4 makes it
evident that if G = (ω,E) is highly recursive digraph, then there is
highly recursive R ⊆ ω2 such that (ω,R) ∼= Vω(G). Since the digraph
Gω of Example 3.6(b) is easily seen to be highly recursive, we may
conclude that there is a highly recursive F ⊆ ω2 such that (ω, F ) ∼=
Vω(Gω). �

Remark 3.10.

(a) Generally speaking, if M is a highly recursive ω-model of ZFfin, then
the set of natural numbers NM is also recursive. However, it is easy
to construct a recursive ω-model of ZFfin in which the set of natural
numbers NM is not recursive. With more effort, one can even build a
recursive ω-model of ZFfin that is not isomorphic to a recursive model
with a recursive set of natural numbers.

(b) A minor modification of the proof of Corollary 3.9 shows that there
are infinitely many pairwise elementarily inequivalent highly recursive
models of ZFfin. This is based on the observation that each digraph in
the family {I ×Gω : |I| ∈ ω} has a highly recursive copy, and for each
positive n ∈ ω the sentence

∃x1 · · · ∃xn (
∧

1≤i≤n

“τ(xi) is infinite” ∧
∧

1≤i<j≤n

τ(xi) ∩ τ(xj) = ∅)

holds in Vω(I×Gω) iff |I| ≥ n. In particular, this shows that in contrast
to PA and ZFfin + TC, ZFfin + ¬TC has infinitely many nonisomorphic
recursive models. However, as shown by the next theorem, ZFfin does
not entirely escape the reach of Tennenbaum phenomena.17

Theorem 3.11. Every recursive model of ZFfin is an ω-model.

Proof: The theory ZFfin is existentially rich (see [Sch-2, Definition 1.1])
as is shown by the recursive sequence 〈θn(x) : n ∈ ω〉, where θn(x) is

16For example, c can be defined via c(X) =
∑

n∈X

2n.

17The proof of Theorem 3.11 indeed shows that every recursive model of EST is
an ω-model.
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the existential formula

∃x0, x1, . . . , xn+2, y0, y1, . . . , yn+2

( ∧
i<j≤n+2

xi 6= xj

∧
∧

i≤n+2

(xi ∈ yi ∧ xi+1 ∈ yi ∈ x)
)
.

Here, we understand xn+3 to be x0. To see that the θn(x) are existen-

tially rich, let i0, i1, i2, ··· be sufficiently fast growing (letting in = n2+5n
2

is good enough) and then let

En = {{i, i+ 1} : in ≤ i < in + n− 1} ∪ {in + n− 1, in}.
If I is a finite subset of ω and a =

⋃
n∈I

En, then

ZFfin ` θn(a) if n ∈ I, and ZFfin ` ¬θn(a) if n /∈ I.

Moreover, thanks to the coding apparatus available in ZFfin, there is a
binary formula θ(n, x) such that for each n ∈ ω,

(∗) ZFfin ` ∀x (θ(n, x) ↔ θn(x)) .

Suppose M is a non ω-model of ZFfin, and let A,B be two disjoint,
recursively inseparable, recursively enumerable sets. Since M satisfies
IndN, we can use Overspill to arrange a definable subset S of M such
that A ⊆ S and B is disjoint from S. If S(x) is a defining formula for
S in M, then for each n ∈ ω, there is c in M such that

M |= ∀i < n (θi(c) ↔ S(i)) .

We can use Overspill again and (∗) to obtain a nonstandard H ∈ NM

and some d in M such that

M |= ∀i < H (θ(i, d) ↔ i ∈ d).
This shows that for all i ∈ ω, M |= (θi(d) ↔ i ∈ d). Therefore if M
is recursive, then so is the set of standard numbers in d, contradicting
the recursive inseparability of A,B. �

Before presenting the next result, let us observe that the first order
theory of a digraph G does not, in general, determine the first order
theory of Vω(G). To see this, let 2 × Gω be the disjoint sum of two
copies of the digraph Gω of Example 3.6(b). Then Gω and 2×Gω are
elementarily equivalent, but Vω(Gω) and Vω(2 × Gω) are not elemen-
tarily equivalent, indeed, both Vω(Gω) and Vω(2×Gω) are the unique
ω-models of their own first order theories up to isomorphism. However,
Theorem 3.12 shows that the L∞ω-theory of Vω(G) is determined by
the L∞ω-theory of G.
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Recall that the infinitary logic L∞ω is the extension of first logic that
allows the formation of disjunctions and conjunctions of arbitrary car-
dinality, but which only uses finite strings of quantifiers. By a classical
theorem of Karp [Ba, Ch. VII, Thm 5.3], two structures A and B are
L∞ω equivalent iff A and B are partially isomorphic, i.e., there is a
collection I of partial isomorphisms between A and B with the back-
and-forth-property (written I : A ∼=p B). More specifically, I : A ∼=p B
if each f ∈ I is an isomorphism between some substructure Af of A
and some substructure Bf of B; and for every f ∈ I and every a ∈ A
(or b ∈ B) there is a g ∈ I with f ⊆ g and a ∈ dom(g) (or b ∈ ran(g),
respectively).

Theorem 3.12. Suppose G and G′ are digraphs with G ≡∞ω G
′. Then

Vω(G) ≡∞ω Vω(G′).

Proof: By Karp’s Theorem, it suffices to show that if G ∼=p G′,
then Vω(G) ∼=p Vω(G′).18 Let I : G ∼=p G

′ and consider the sequence

{In : n ∈ ω}, with I0 := I and In+1 = {f : f ∈ In}, where

f := f ∪ {〈S, f(S)〉 : S ∈ D(Vn(G)) ∩ dom(f)} .

We claim that for each n ∈ ω, In : Vn(G) ∼=p Vn(G′). Observe that
if f ∈ In : Vn(G) ∼=p Vn(G), and S ∈ D(Vn(G1)), then f(S) ∈
D (Vn(G′)) . Using this observation it is easy to show that each member
of In is a partial isomorphism between a substructure of Vn(G) and a
substructure of Vn(G′).

The back-and-forth property of In is established by induction. Since
the base case is true by our choice of I0, and G and G′ play a symmetric
role in the proof, it suffices to verify the “forth” portion of the inductive
clause by showing that the forth-property is preserved in the passage
from In to In+1. So suppose that f ∈ In+1 (where f ∈ In), and a ∈
Vn+1(G). We need to find g ∈ In such that g extends f and a ∈ dom(g).
We distinguish two cases:

• Case 1: a ∈ Vn(G).
• Case 2: a ∈ Vn+1(G)\Vn(G).

If Case 1 holds, then the desired g exists by the forth-property of In.
On the other hand, if Case 2 holds, then a is one of the deficiency sets

18Advanced methods in set theory provide a succinct proof of this fact. If G ∼=p

G′, then there is a Boolean extension VB of the universe of set theory wherein
G ∼= G′, which in turn implies that Vω[G] ∼= Vω[G′] in VB. But since Vω[G] is
absolute in the passage to a Boolean extension for every G, and L∞ω-equivalence
is a Π1-notion, Vω[G] ≡∞ω Vω[G′] in the real world.
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of Vn(G), and
a = {c1, · · ·, ck} ⊆ Vn(G).

Therefore by k-applications of the “forth” property of In, we can find
an extension g of f with {c1, · · ·, ck} ⊆ dom(g). This will ensure that g
extends f and a ∈ dom(g). Having constructed the desired {In : n ∈ ω},
we let Iω :=

⋃
n∈ω

In. Clearly

Iω : Vω(G) ∼=p Vω(G′).

�

Example 3.13. Suppose I and J are infinite sets and G is a digraph.
Then I×G ∼=p J×G. To see this, we can choose the corresponding I to
consist of (full) isomorphisms between structures of the form X×G and
Y × G, where X and Y are finite subsets of I and J (respectively) of
the same finite cardinality. In particular, for any digraph G

Vω(I ×G) ≡∞ω Vω(J ×G).

Remark 3.14.

(a) Let G be the category whose objects are extensional acyclic digraphs
all of whose vertices have finite in-degree, and whose morphisms are
end embeddings, i.e., embeddings f : G → G′ with the property that
f(G) ⊆e G

′; and let GZFfin
be the subcategory of G whose objects are

ω-models of ZFfin. Then there is a functor

Φ : G → GZFfin
.

Moreover, Φ is a retraction (i.e., if G ∈ GZFfin
, then Φ(G) ∼= G), and the

following diagram commutes (in the diagram η is the inclusion map)

G
f−→ G′

↓ η ↓ η
Vω(G)

Φ(f)−→ Vω(G′)

Φ is defined in an obvious manner: Φ(G) := Vω(G); and for each end
embedding f : G → G′, Φ(f) is recursively constructed by Φ(f)(x) =
f(x) for all x ∈ G, and for S ∈ Vn+1(G)\Vn(G), Φ(f)(S) = the unique
element v of Vω(G′) such that vF = {f(x) : x ∈ S}, where F is the
membership relation of Vω(G′). Note that Φ(f) is the unique extension
of f to a morphism whose domain is Vω(G). Indeed, it is not hard to
see that Φ is the left adjoint of the functor e that identically embeds
GZFfin

into G. Since each functor has at most one left adjoint up to
natural isomorphism [Mac, Cor. 1, Ch. IV], this shows that Φ is a
closure operation that can be characterized in an “implementation-
free” manner.
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(b) It is easy to see that for each morphism f : G → G′ of G, Φ(f)
is surjective if f is surjective. Therefore, Φ(f) is an automorphism
of Vω(G) if f is an automorphism of G. Indeed, for any fixed G ∈
G, the map f 7→ Φ(f) defines a group embedding from Aut(G) into
Aut(Vω(G)). Note that Φ(f) is the only automorphism of Vω(G) that
extends f , since if g is any automorphism of Vω(G), then for each
S ∈ Vω(G)\G, by Extensionality, g(S) = {g(x) : x ∈ S}. In general,
Aut(G) need not be isomorphic to Aut(Vω(G)), e.g., Gω of Example
3.6(b) is a rigid digraph, but Aut(Vω(Gω)) is an infinite cyclic group.
However, Theorem 4.2 shows that Aut(G) ∼= Aut(Vω(G) for a wide class
of digraphs G.

4. MODELS WITH SPECIAL PROPERTIES

In this section we refine the method introduced in the proof of The-
orem 3.4 in order to construct various large families of ω-models of
ZFfin with a variety of additional structural features, e.g., having a pre-
scribed automorphism group, or being pointwise definable. The central
result of this section is Theorem 4.2 below which shows that one can
canonically code any prescribed graph (A,F ), where F is a set of 2-
element subsets of A, into a model of ZFfin, thereby yielding a great
deal of control over the resulting ω-models of ZFfin.

Definition 4.1. In what follows, every digraph G = (X,E) we con-
sider will be such that ω ⊆ X; and for n ∈ ω, nE = {0, 1, . . . , n − 1}.
In particular, 0E = ∅.

(a) Let ϕ1(x) be the formula in the language of set theory that ex-
presses

“there is a sequence 〈xn : n < ω〉 with x = x0 such that
xn = {n, xn+1} for all n ∈ ω”.

At first sight, this seems to require an existential quantifier over infi-
nite sequences (which is not possible in ZFfin), but this problem can
be circumvented by writing ϕ1(x) as the sentence that expresses the
equivalent statement

“for every positive n ∈ ω, there is a sequence sn = 〈xi : i < n〉 with
x0 = x such that for all i < n− 1, xi = {i, xi+1}”.

(b) Using the above circumlocution, let θ(x, y, e) be the formula in the
language of set theory that expresses
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“x 6= y ∧ ϕ1(x) ∧ ϕ1(y), with corresponding sequences 〈xn : n ∈ ω〉 ,
and 〈yn : n ∈ ω〉 , and there is a sequence 〈en : n ∈ ω〉 with e = e0

such that en = {en+1, xn, yn} for all n ∈ ω.”

Then let ϕ2(x, y) := ∃e θ(x, y, e).

Theorem 4.2. For every graph (A,F ) there is an ω-model M of ZFfin

whose universe contains A and which satisfies the following conditions:

(a) (A,F ) is definable in M;
(b) Every element of M is definable in (M, x)x∈A;
(c) If (A,F ) is pointwise definable, then so is M;
(d) Aut(M) ∼= Aut(A,F ).

Proof: Let

X = ω ∪
(
(A ∪ F )× ω

)
.

For elements of X\ω, we write zn instead of 〈z, n〉. This notation
should be suggestive of how these elements are used in the definitions
of ϕ1(x, y) and θ(x, y, e). Let

E = {〈m,n〉 : m < n ∈ ω} ∪
{〈n, xn〉 : n ∈ ω, x ∈ A} ∪
{〈xn+1, xn〉 : n ∈ ω, x ∈ A} ∪
{〈en+1, en〉 : n ∈ ω, e ∈ F} ∪
{〈xn, en〉 : n ∈ ω, x ∈ e ∈ F} .

Moreover, in order to arrange A ⊆ X we can identify elements of the
form 〈x, 0〉 with x when x ∈ A. This gives G = (X,E), which is an
extensional, acyclic digraph all of whose vertices have finite in-degree.
Let M := Vω(G). By Theorem 3.4, M is an ω-model of ZFfin. Note
that if n ∈ ω, x ∈ A, and e = {x, y} ∈ F , then M satisfies both

“xn = {xn+1, n}́” and “en = {xn, yn, en+1}”, as shown in Figure 1.
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0 x0 e0 y0 0

1 x1 e1 y1 1

2 x2 e2 y2 2

Figure 1: Representation of an Edge

2

It is clear that if {x, y} ∈ F , then M |= ϕ2(x, y). In order to establish
(a) it suffices to check that if M |= ϕ1(x), then x ∈ A, i.e., we need to
verify that Vω(G) \ X does not contain an element that satisfies ϕ1.
Suppose M |= ϕ1(c) for some c ∈ Vω(G) \ X. Then there is a sequence
〈cn : n < ω〉 with c = c0 such that cn = {n, cn+1} for all n ∈ ω. On
the other hand, by Remark 3.5(b), we may choose n0 > 0 as the first
n ∈ ω for which τ(c)\τ(n, c) ⊆ G. It is easy to see that this allows
us to find some x ∈ A such that τ(c)\τ(n, c) = τ(x)\τ(n, x). Since
n0 > 0 this in turn shows that {n0, cn0+1} = {n0, xn0+1} which implies
that τ(c)\τ(n0− 1, c) ⊆ G, thereby contradicting the minimality of n0.
This concludes the proof of (a).

In light of Remark 3.5(a), in order to establish (b) it suffices to show
that every vertex of G is definable in (M, x)x∈A. Since it is clear that
each element of ω is definable in M, we shall focus on the definability of
elements of (A∪F )×ω. Each xn is definable in (M, x0) since M satisfies
“xn = {n, xn+1}”. Similarly, since M satisfies “en = {en+1, xn, yn}” the
definability of each en follows from the definability of e0 in (M, x)x∈A.
To verify this, suppose e = {x, y}. Let θ be as in Definition 4.1. Then
θ(x, y, z) defines e0 in (M, x, y).

(c) is an immediate consequence of (a) and (b) since if (A,F ) is
pointwise definable, then by (a), every element of A is definable in M.

To prove (d), we first establish Aut(G) ∼= Aut(M), where G is the
digraph (X,E). We already commented in Remark 3.14(b) that (1)
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there is an embedding Φ from Aut(G) into Aut(M), and (2) every au-
tomorphism of G has a unique extension to an automorphism of M.
Therefore, in order to show that Φ is surjective, it suffices to show
that X is definable in M since the definability of X in M would imply
that g � X ∈ Aut(G) for every g ∈ Aut(M). Recall that ϕ1 defines
{x0 : x ∈ A} in M. On the other hand,

ϕ3(z) := ∃x∃y θ(x, y, z)
defines {e0 : e ∈ F} in M. So X is definable in M by the formula

ϕ4(u) := N(u) ∨ ∃v (u ∈ τ(v) ∧ (ϕ1(v) ∨ ϕ3(v))) .

This concludes the proof of Aut(G) ∼= Aut(M). Therefore to estab-
lish (c) it suffices to verify that Aut(A,F ) ∼= Aut(G). Suppose f ∈
Aut(A,F ). We shall build f ∈ Aut(G) such that f 7→ f describes an
isomorphism between Aut(A,F ) and Aut(G). f is defined by cases:

• f(n) = n for n ∈ ω.
• f is defined recursively on {xn : x ∈ A, n ∈ ω} by: f(x0) =
f(x0) and f(xn+1) = the unique element v ∈ G for which
(f(xn))E = {n, v}.

• f is defined recursively on {en : e ∈ F, n ∈ ω} by: for e =
{x, y}, f(e0) = e′0, where e′ = {f(x), f(y)}, and f(en+1) = the
unique element v ∈ G for which

(
f(en)

)
E

= {f(xn), f(yn), v}.
Moreover, it is easy to see that if g ∈ Aut(G), then g is uniquely

determined by g � A. Therefore in order to verify that the map f 7→ f
is surjective, it suffices to observe that A is definable in G by the
formula ψ(x) that expresses “0 ∈ x∧ |x| = 2∧ x 6= {0, 1}”. This shows
that Aut(A,F ) ∼= Aut(G) and completes the proof of (d).

�

Remark 4.3.

(a) Let GZFfin
be the category defined in Remark 3.14, and consider the

category F whose objects are graphs (A,F ), and whose morphisms are
embeddings f : (A,F ) → (A′, F ′). The proof of Theorem 4.2 shows
that there is a functor Ψ from F into GZFfin

such that for every object
A = (A,F ) of F , the set of vertices of Ψ(A) includes A; every automor-
phism of A has a unique extension to an automorphism of Ψ(A); and
every automorphism of an object in GZFfin

of the form Ψ(A) is uniquely
determined by its restriction to A.

(b) Let ϕ1 and θ be as in Definition 4.1, and let δ(z) be the formula
in the language of set theory that expresses:
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“z is of the form {X,E}, where ϕ1(x) holds for each x ∈ X, and for
each e ∈ E, there are x and y in X such that θ(x, y, e)”,

and let σ := ∀t∃z(t ∈ τ(z) ∧ δ(z)). Then the class of ω-models of
ZFfin + σ are precisely those objects in F that lie in the range of the
functor Ψ defined in (a) above. Note that (Vω,∈) |= σ since δ({∅})
vacuously holds in (Vω,∈) .

Corollary 4.4. Every group can be realized as the automorphism group
of an ω-model of ZFfin.

19

Proof: A classical theorem of Frucht [Fr] shows that every group can
be realized as the automorphism group of a graph. 20 �

Corollary 4.5. For every infinite cardinal κ there are 2κ nonisomor-
phic rigid ω-models of ZFfin of cardinality κ.

Proof: It is well-known that there are 2κ nonisomorphic rigid graphs
of cardinality κ. One way to see this is to first show that there are
2κ nonisomorphic rigid linear orders of cardinality κ by the following
construction: start with the well-ordering (κ,∈), and for each S ⊆ κ
let LS be the linear order obtained by inserting a copy of ω∗ (the
order-type of negative integers) between α and α + 1 for each α ∈ S.
Since LS and LS′ are nonisomorphic for S 6= S ′ this completes the
argument since every linear order can be coded into a graph with the
same automorphism group: given a linear order (L,<L), let [L]2 be
the set of all 2-element subsets of L, and for each s ∈ [L]2, introduce
distinct vertices {as, bs}, and consider the graph (A,F ), where

A = L ∪ {as : s ∈ S} ∪ {bs : s ∈ S},
and

F = {{x, as} : x ∈ s ∈ [L]2} ∪
{{as, bs} : s ∈ [L]2} ∪
{{x, bs} : s = {x, y}, and x <L y}.

�

Corollary 4.6. For every infinite cardinal κ there is a family M of
cardinality 2κ of ω-models of ZFfin of cardinality κ such that for any

19In contrast, the class of groups that arise as automorphism groups of models
of ZFfin + TC are precisely the right-orderable groups. This is a consequence of
coupling the bi-interpretability of ZFfin + TC and PA with a key result [KS, Theorem
5.4.4] about automorphisms of models of PA.

20See [Lo] for an exposition of Frucht’s theorem and its generalizations.
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distinct M1 and M2 in M, there is no elementary embedding from M1

into M2.

Proof: It is well-known that there is a family G of power 2κ of simple
graphs of cardinality κ such that for distinct G1 and G2 in G, there is
no embedding from G1 into G2.

21 �

The next corollary is motivated by the following observations: (1)
(Vω,∈) is a pointwise definable model, and (2) The Gödel-Rosser in-
completeness theorem is powerless in giving any information on the
number of complete extensions of ZFfin that possess an ω-model.22

Corollary 4.7. There are 2ℵ0 pointwise definable ω-models of ZFfin.
Consequently there are 2ℵ0 complete extensions of ZFfin that possess
ω-models.

Proof: This is an immediate consequence of Theorem 4.2(c) and the
well-known fact that there are 2ℵ0 nonisomorphic pointwise definable
graphs. One way to establish the latter fact is as follows: for each S ⊆ ω
first build a graph AS with the property that no two vertices have the
same degree, each vertex has finite degree, and if n < ω, then n ∈ S
iff there is a vertex having degree n. Clearly AS is pointwise definable,
and distinct S’s yield nonisomorphic AS (incidentally, if 0 /∈ S, then
AS can be arranged to be connected. Also, if S is r.e., then a highly
recursive AS can be constructed). �

The next corollary is an immediate consequence of coupling Theorem
4.2 with a classical construction [Ho, Theorem 5.5.1] that implies that
for every structure A in a finite signature there is a graph GA that is
bi-interpretable with an isomorphic copy of A. It is easy to see (but
a bit cumbersome to write out the details of the proof) that if two
structures A and B are bi-interpretable, then (1) their automorphism
groups Aut(A) and Aut(B) are isomorphic [Ho, Exercise 8, Sec. 5.4],
and (2) A is pointwise definable iff B is pointwise definable. We could
have used this approach to provide succinct indirect proofs of the above

21Indeed, by a theorem of Nes̆etr̆il and Pultr [NP] one can stengthen this result
by replacing “embedding” to “homomorphism”. We should also point out that by
a result of Perminov [P] for each infinite cardinal κ, there are 2κ nonisomorphic
rigid graphs none of which can be embedded in to any of the others. This shows
that Corollaries 4.6 and 4.7 can be dovetailed.

22The Gödel-Rosser theorem can be fine-tuned to show the essential undeciabil-
ity of consistent first order theories that interpret Robinson’s Q [HP, Thm 2.10,
Chap. III], thereby showing that such theories have continuum-many consistent
completions (indeed, the result continues to hold with Q replaced by the weaker
system R).
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corollaries, but in the interest of perspicuity, we opted for more direct
proofs.

Corollary 4.8. For every structure A in a finite signature there is an
ω-model M of ZFfin such that M interprets an isomorphic copy of A,
and Aut(A) ∼= Aut(B). Furthermore, if A is pointwise definable, then
so is M.

To motivate the last result of this section, let us recall that Vω is the
only ω-model of ZFfin +TC up to isomorphism. As shown by Corollary
4.8 below, there are many other “categorical” finite extensions of ZFfin.
One can also show that there are continuum-many completions of ZFfin

that possess a unique ω-model up to isomorphism.

Corollary 4.9. There are infinitely many countable nonisomorphic
ω-models of ZFfin each of which is the unique ω-model of some finite
extension of ZFfin.

Proof: For 0 < r ∈ ω, let ψr(x) be the following variant of ϕ1(x) of
Definition 4.1:

“there is a sequence 〈xn : n < ω〉 with x = x0 such that
xn = {n, xn+1} if r | n; and xn = {xn+1} otherwise.”

Next, let θr be the sentence that expresses

“∃x (V = Vω((τ(x),∈)) and ψr(x)”.

Clearly ZFfin + θr has a unique ω-model up to isomorphism, and for
r 6= s, no ω-model of ZFfin satisfies both θr and θs. �

Remark 4.10. The theories ZFfin + θr of the proof of Corollary 4.9
provide examples of extensions of ZFfin +¬TC that are bi-interpretable
with PA. Furthermore, for every positive r, every model of PA has a
unique extension to a model of ZFfin +θr, i.e., if M and N are models of
ZFfin + θr such that there is an isomorphism f between (N,+,×)M and

(N,+,×)N, then f has a (unique) extension to an isomorphism between
M and N.

5. ZFfin AND PA ARE NOT BI-INTERPRETABLE

In this section we wish to carry out the promise made at the end of
Remark 2.2(f) by establishing the strong failure of bi-interpretability
of ZFfin and PA. Recall that two theories U and V are said to be bi-
interpretable if there are interpretations I : U → V and J : V → U ,
a binary U -formula F , and a binary V -formula G, such that F is,
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U -verifiably, an isomorphism between idU and J ◦ I, and G is, V -
verifiably, an isomorphism between idV and I◦J . This notion is entirely
syntactic, but has several model theoretic ramifications. In particular,
given models A |= U and B |= V , the interpretations I and J give rise
to (1) models J A |= V and IB |= U , and (2) isomorphisms FA and
GB with

FA : A −→ (J ◦ I)A = I(JA) and GB : B
∼=−→ (I ◦ J )B = J (IB).

A much weaker notion, dubbed sentential equivalence23 in [Vi-2], is ob-
tained by replacing the demand on the existence of definable isomor-
phisms with the requirement that the relevant models be elementarily
equivalent, i.e., for any A |= U and B |= V,

A ≡ (J ◦ I)A and B ≡ (I ◦ J )B .

Theorem 5.1. ZFfin and PA are not sententially equivalent.

Proof: Suppose to the contrary that the interpretations

I : ZFfin → PA, and J : PA → ZFfin

witness the sentential equivalence of ZFfin and PA. In light of the fact
that there are at least two elementarily inequivalent recursive models
of ZFfin, in order to reach a contradiction it is sufficient to demonstrate
that the hypothesis about I and J can be used to show that any two
arithmetical ω-models of ZFfin are elementarily equivalent. To this end,
suppose M is an arithmetical ω-model of ZFfin. We claim that

JM ∼= (ω,+,×).

The following classical theorem of Scott24 plays a key role in the ver-
ification of our claim. In what follows, an arithmetical model of PA
refers to a structure of the form (ω,⊕,⊗), where there are first order
formulas ϕ(x, y, z) and ψ(x, y, z) that respectively define the graphs of
the binary operations ⊕ and ⊗ in the model (ω,+,×).

Theorem (Scott [Sco]). No arithmetical nonstandard
model of PA is elementarily equivalent to (ω,+,×).

23It is easy to see (using the completeness theorem for first order logic) that
sentential equivalence can also be syntactically formulated.

24In order to make the proof self-contained, we sketch an outline of the proof of
Scott’s theorem. If a nonstandard model A is elementarily equivalent to (ω, +, ·),
then the standard system SSy(A) of A has to include all arithmetical sets. If, in ad-
dition, A were to be arithmetical, then every member of SSy(A), and therefore every
arithmetical set, would have to be of bounded quantifier complexity, contradiction.
Scott’s result has recently been revisited in [IT, Sec.3].
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Let M′ ≡ (J ◦ I)M. By assumption, M′ ≡ M, which implies that

(N,+,×)M ≡ (N,+,×)M′
.

This shows that (N,+,×)M′
is elementarily equivalent to (ω,+,×) since

M is an ω-model. Coupled with the fact that (N,+,×)M′
is an arith-

metical model (since it is arithmetically interpretable in an arithmeti-
cal model), Scott’s aforementioned theorem can be invoked to show
that M′ must be an ω-model. But since no nonstandard model of
PA can interpret an isomorphic copy of (ω,<) this shows that for any
arithmetical ω-model M of ZFfin, JM ∼= (ω,+,×). Therefore, the as-
sumption of sentential equivalence of ZFfin and PA implies that any two
arithmetical ω-models of ZFfin are elementarily equivalent, which is the
contradiction we were aiming to arrive at. �

Remark 5.2.

(a) The proof of Theorem 5.1 only invoked one of the two elemen-
tary equivalences stipulated by the definition of sentential equivalence,
namely that M ≡ (J ◦ I)M for every M |= ZFfin. In the terminology
of [Vi-2], this shows that ZFfin is not a retract of PA in the appropriate
category in which definitional equivalence is isomorphism.

(b) As mentioned in Remark 3.10(b), there are infinitely many ele-
mentarily inequivalent recursive ω-models of ZFfin + ¬TC. Using the
proof of Theorem 5.1 this fact can be used to show that the theories
ZFfin +¬TC and PA are not sententially equivalent either. However, as
pointed out in Remark 4.10, there are finite extensions of ZFfin + ¬TC
that are bi-interpretable with PA.

6. CONCLUDING REMARKS AND OPEN QUESTIONS

Let A ≡Levy
n B abbreviate the assertion that A and B satisfy the same

ΣLevy
n formulas in the usual Levy hierarchy of formulas of set theory (in

which only unbounded quantification is significant).

Theorem 6.1. If A and B are ω-models of ZFfin, then A ≡Levy
1 B.

Proof: We use a variant of the Ehrenfeucht-Fräıssé game adapted
to this context, in which once the first player (spoiler) and second
player (duplicator) have made their first moves by choosing elements
from each of the two structures, the players are obliged to select only
members of elements that have been chosen already (by either party).
We wish to show that for any particular length n of the play (n > 0), the
duplicator has a winning strategy. Assume, without loss of generality,
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that the spoiler chooses a1 ∈ A. The duplicator responds by choosing
b1 ∈ B with the key property that there is function f such that

f : (τ(n, a),∈)A ∼=−→ (τ(n, b),∈)B .

(it is easy to see, using the fact that A and B are ω-models of ZFfin,
that the duplicator can always do this). From that point on, once
the spoiler picks any element c from either structure the duplicator
responds with f(c) or f−1(c) depending on whether c is in the domain
or co-domain of f. �

Note that TC is ΠLevy
2 (since TC(x) is ΣLevy

1 ) relative to ZFfin, so in the

conclusion of Theorem 6.1, ≡Levy
1 cannot be replaced by ≡Levy

2 since A
can be chosen to be (Vω,∈) and B can be chosen to be a nonstandard
ω-model of ZFfin. These considerations motivate the next question.

Question 6.2. Is it true that for each n ≥ 1 there are ω-models A

and B of ZFfin that are ≡Levy
n equivalent but not ≡Levy

n+1 equivalent?

Question 6.3. For infinite cardinals κ and λ, let M(κ, λ) be the
class of models M of ZFfin such that the cardinality of M is κ, and
the cardinality of NM is λ.

(a) Is there a first order scheme Γ1 in the language of set theory such
that Th(M(ω1, ω)) = ZFfin + Γ1?

(b) Is there a first order scheme Γ2 in the language of set theory such
that Th(M(iω, ω)) = ZFfin + Γ2?

Question 6.3 is motivated by two classical two-cardinal theorems of
Model Theory25 due to Vaught, which show that the answers to both
parts of Question 6.3 are positive if “first order scheme” is weakened
to “recursively enumerable set of first order sentences”. The afore-
mentioned two-cardinal theorems also show that (1) for κ > λ ≥ ω,
Th(M(κ, λ)) ⊇ Th(M(ω1, ω)), and (2) for all κ ≥ iω, Th(M(κ, ω)) ⊆
Th(M(iω, ω)).
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