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ARITHMETIC VIA AUTOMORPHISMS

ALI ENAYAT

Abstract. In this paper we examine the relationship between automorphisms
of models of I∆0 (bounded arithmetic) and strong systems of arithmetic, such
as PA, ACA0 (arithmetical comprehension schema with restricted induction),
and Z2 (second order arithmetic). For example, we establish the following
characterization of PA by proving a “reversal” of a theorem of Gaifman:

Theorem. The following are equivalent for completions T of I∆0 :
(a) T ` PA;
(b) Some model M = (M, · · ·) of T has a proper end extension N which
satisfies I∆0 and for some automorphism j of N, M is precisely the fixed
point set of j.
Our results also shed light on the metamathematics of the Quine-Jensen system
NFU of set theory with a universal set.

1. INTRODUCTION

The classical work of Ehrenfeucht and Mostowski introduced the powerful method
of indiscernibles to show that any first order theory with an infinite model has a
proper class of models with rich automorphism groups [CK, Section 3.3]. In the con-
text of models of arithmetic, the first substantial results concerning automorphisms
that extend the work of Ehrenfeucht and Mostowski are to be found in Gaifman’s
seminal work [G] on the model theory of Peano arithmetic PA. Gaifman refined
the MacDowell-Specker method [MS] of building elementary end extensions by in-
troducing the machinery of minimal types, which can be used to produce a variety
of models of PA with special properties. For example, they can be used to establish
the striking result below. Here Aut(N) is the group of automorphisms of N, and
Aut(N,M) is the pointwise stabilizer of M (i.e., the subgroup of Aut(N) consisting
of automorphisms of N that fix every element of M).

Theorem 1.1. (Gaifman) Suppose M = (M, · · ·) is a model of PA, and L is a
linear order.

(a) There is an elementary end extension N of M such that Aut(N,M) ∼=
Aut(L) [G, Theorem 4.11].

(b) There is an elementary end extension N of M such that for some j ∈
Aut(N), M is the fixed point set of j [G, Theorems 4.9 - 4.11].

Schmerl [Sc] has recently established a strong generalization of part (a) of Theorem
1.1 by showing that Aut(L) can be replaced by any closed subgroup of Aut(L).
This shows that the class of left-orderable groups coincides with the class of groups
that can occur as Aut(M) for models M of PA. A major trend in the study of
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automorphism groups of models of PA was initiated in the early 1980’s with the
work of Smorynski and Kotlarski (independently) on automorphisms of countable
recursively saturated models. This has proved to be a fertile area of research, and
has resulted in a number of striking results by Kaye, Kossak, Kotlarski, Lascar,
and Schmerl, to name a few. The reader interested in becoming familiar with the
rudiments of the subject is referred to the volume [KM].

This paper provides model theoretic characterizations of the strong systems of
arithmetic PA, ACA0, and Z2 in terms of automorphisms of models of the weak
system of arithmetic I∆0 (commonly known as bounded arithmetic). Previously,
Ressayre [Re] provided elegant characterizations of PA and the fragment IΣ1 of
PA in terms of endomorphisms, but there is no overlap between Ressayre’s results
and ours. For other model theoretic characterizations of PA, see [Kay].

The plan of the paper is as follows. After dealing with preliminaries in Section 2,
we concentrate on the relationship between automorphisms of models of bounded
arithmetic and the axiomatic systems PA and ACA0 in Section 3. The principal
results of Section 3 are Theorems A and B. Theorem A (Section 3.1) establishes a
strong reversal of Theorem 1.1(b), while Theorem B (Section 3.2) is a refined form
of Theorem 1.1(b) for models of ACA0 (Theorem B is implicit in Gaifman [G],
but the proof here is new). Theorems A and B together yield a model theoretic
characterization of ACA0 in terms of automorphisms. Section 4 focuses on the
relationship between automorphisms of models of bounded arithmetic and models
of second order arithmetic. The key notion in Section 4 is that of an “M -amenable
automorphism”, shown in Theorems C and D to be closely tied to models of full
second order arithmetic. Section 5 includes a brief discussion of the consequences
of the results in Sections 3 and 4 for the metamathematics of NFU set theory, and
a discussion of further work and open questions.

The results of this paper were discovered in the context of the study of Jensen’s
modification NFU [Jen] of Quine’s New Foundations system NF of set theory [Q]
with a universal set. They have been used by Robert Solovay and the author to
pinpoint the “arithmetical content” of certain natural extensions of NFU , such
as the theory NFUA−∞ obtained by strengthening NFU with the axioms “every
set is finite” and “every Cantorian set is strongly Cantorian”. This topic will be
fully treated in a forthcoming paper and we have therefore provided only a brief
summary of our results for the metamathematics of NFU in Section 5.1. We should
mention that there is also a set theoretical counterpart to the theme of this paper.
This is partly explained in [E-1], in which automorphisms of models of weak systems
of set theory are shown to be intimately connected to ZF -set theory with Mahlo
cardinals. Roughly speaking, the results in [E-1] are the set theoretical analogues
of Theorems A and B of this paper. The set theoretical analogues of Theorems D
and E will appear in [E-3].

Brief history: In the early 1990’s Holmes [Ho-1] made a breakthrough by using
a large cardinal hypothesis (measurability) to establish the consistency of certain
natural extensions (NFUA and NFUB) of the Quine-Jensen system NFU. Holmes’
work prompted Solovay1 to work out the precise consistency strengths of NFUA

1Solovay’s work on NFUB appears in [Sol], but his work on NFUA is unpublished. Holmes
[Ho-1] contains an extension of one direction of Solovay’s equiconsistency result on NFUA, and
[E-1] contains a generalization of both directions of Solovay’s equiconsistency result on NFUA.
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and NFUB, by showing that (a) NFUA is equiconsistent with

ZFC + {“there is an n-Mahlo cardinal” : n ∈ ω},
and that (b) NFUB is equiconsistent with

ZFC\{Power Set}+ “there is a weakly compact cardinal”.

The work of Holmes and Solovay unearthed a deep, unexpected relationship between
strong set theoretical hypotheses and models of NFUA/B in which the axiom of
infinity holds. This inspired the author to seek a parallel relationship between
strong arithmetical hypotheses and models of NFUA/B in which the axiom of
infinity fails. My initial result in this direction (a slightly weaker form of Theorem
C) was an arithmetical analogue of a key result in [Sol]. The communication of
this result to Solovay in January 2002 led to an extensive (e-mail) correspondence
during the following year. It was during the course of this intense and inspiring
period that I managed to obtain the results of this paper in their current form.
Solovay has also established a number of results concerning the metamathematics
of NFU that remain unpublished, which will hopefully appear in the near future.

Acknowledgments: I am indebted to Robert Solovay for his patience and
insights offered through meticulously crafted e-mail communiqués. I also wish to
thank Randall Holmes for helpful discussions about NFU ; Roman Kossak and Joel
Hamkins for inviting me to present my results at the CUNY Logic Workshop; Albert
Visser for formulating probing questions which led me to the results in Section 3.3;
Steve Simpson for alerting me to the crucial role of the dependent choice scheme in
Mostowski’s forcing construction [Mo-1, 2]; and Iraj Kalantari and Mojtaba Moniri
for unfailing camaraderie. I am also grateful to Andreas Blass and the anonymous
referees for detailed constructive comments on earlier drafts of this paper.

2. PRELIMINARIES

2.1. Bounded Arithmetic

• The language of first order arithmetic, LA, is {+, ·, Succ(x), <, 0}.
• Models of LA are of the form M = (M, +M, · · ·), N = (N, +N, · · ·), etc.

For models M and N of LA, we say that N end extends M (equivalently:
M is an initial submodel of N), written M ⊆e N, if M is a submodel of
N and a < b for every a ∈ M, and b ∈ N\M. We abbreviate the phrase
“elementary end extension” by “e.e.e.”.

• I is a cut of M, where M is a model of Robinson’s Q, if I is a proper initial
segment of M with no last element.

• A first order LA-formula ϕ is said to be a ∆0-formula if all the quantifiers
of ϕ are bounded, i.e., they are of the form ∃x ≤ y, or of the form ∀x ≤ y,
where x and y are (meta)variables. ∆0-formulae are also known as bounded
formulae.

• Bounded arithmetic, or I∆0, is the fragment of Peano arithmetic with the
induction scheme limited to ∆0-formulae. More specifically, it is a theory
formulated in the language LA, and is obtained by adding the scheme of
induction for ∆0-formulae to Robinson’s arithmetic Q. The metamath-
ematical study of bounded arithmetic has close ties with the subject of
computational complexity. See [HP] or [Kr] for thorough introductions.
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• Bennett [Be] showed that the graph of the exponential function y = 2x can
be defined by a ∆0-predicate in the standard model of arithmetic. Later,
Paris found another ∆0-predicate ϕ(x, y) which does the job, and I∆0 can
prove the familiar algebraic laws about exponentiation for ϕ(x, y) [DG,
Appendix]2. By a classical theorem of Parikh [Pa] however, I∆0 can only
prove the totality of functions with a polynomial growth rate, hence

I∆0 0 ∀x∃yϕ(x, y).

It is now known that the graphs of many other fast growing recursive func-
tions, such as the superexponential function Superexp3, the Ackerman func-
tion, and indeed all functions {Fα : α < ε0} in the (fast growing) Wainer
hierarchy, can be defined by ∆0-predicates for which I∆0 can prove ap-
propriate recursion schemes. This remarkable discovery is due to Sommer
[Som-1], [Som-2], but the reader is also referred to D’Aquino’s paper [D]
for a perspicuous ∆0-treatment of the superexponential function and the
Ackerman function.

The following result is well known: a routine proof by contradiction proves (a),
with ∆0 induction applied to ϕ∗(v) := ∀x ≤ v ¬ϕ(v), (b) follows from (a) since the
maximum of Sϕ is the least upper bound of Sϕ, and (c) follows from (b).

Lemma 2.1. Suppose M is a model of I∆0, and let Sϕ be the solution set of
some ∆0-formula ϕ(x,−→a ) in M, where−→a is a sequence of parameters from M . If
Sϕ 6= ∅, then:

(a) [∆0-MIN] Sϕ has a minimum element;
(b) [∆0-MAX] If Sϕ is bounded in M, then Sϕ has a maximum element;
(c) [∆0-OVERSPILL] If Sϕ includes a cut I of M, then for some b ∈ M\I,

[0, b]M ⊆ Sϕ.

2.2. The Strength of I∆0+Exp

Let ϕ(x, y) be a reasonable ∆0-formula expressing “2x = y”. I∆0 + Exp is the
extension of I∆0 obtained by adding the axiom

Exp := ∀x∃yϕ(x, y).

At first sight I∆0+Exp is a rather weak theory since it cannot even prove the total-
ity of the superexponential function or any faster growing function. But, experience
has shown that it is a remarkably robust theory that is able to prove a large variety
of theorems of number theory and finite combinatorics4. One explanation for this
phenomenon is offered by the fact that one can use Ackermann coding to simulate a
workable set theory within I∆0+Exp. Let E(x, y) be a ∆0-predicate that expresses

2Independently, Pudlák [Pu-1] also provided an I∆0-treatment of the exponential function. A
detailed exposition is provided in [Bu] and [HP, Ch. V, Sec.3(c)]

3The superexponential function, Superexp(n, x), is defined by the recursion scheme:

Superexp(0, x) = x, Superexp(n + 1, x) = 2Superexp(n,x). Thus for n > 0, Superexp(n, x) is
an exponential stack of length n+1, where the top element is x, and the remaining n entries form
a tower of 2’s.

4Indeed, Harvey Friedman has conjectured that all “arithmetical theorems” proved in the jour-
nal Annals of Mathematics (such as Wiles’ proof of Fermat’s Last Theorem), can be implemented
within I∆0 + Exp. We refer the reader to Avigad’s paper [Av] for an excellent discussion of the
foundational role of I∆0 + Exp.
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“the x-th digit in the binary expansion of y is a 1”. We shall henceforth refer to
E as “Ackermann’s ∈”. It is well known that M is a model of PA iff (M, E) is
a model of ZF\{Infinity} ∪ {¬Infinity}, but if M is a model of I∆0 + Exp, then
(M, E) is still a model of a decent fragment of ZF\{Infinity} ∪ {¬Infinity}. More
specifically:

Theorem 2.2. (Dimitracopoulos-Gaifman ([DG], [HP, Ch.I., Sec.1(b)]). If M ²
I∆0 + Exp, and E is Ackermann’s ∈, then (M, E) satisfies the following axioms:

(1) Extensionality;
(2) Pairs;
(3) Union;
(4) Powerset;
(5) ∆0-Comprehension Scheme; and
(6) the negation of Infinity.

• Suppose M ² I∆0 and E is Ackermann’s ∈ in the sense of M.
(a) For c ∈ M, cE := {m ∈ M : mEc}.
(b) X ⊆ M is coded in M if there is some c ∈ M such that X = cE .
(c) Suppose I is a cut of M,

SSyI(M) := {cE ∩ I : c ∈ N}.

In particular, if I is the standard cut of M, then SSyI(M) is what is known
in the literature as the standard system of M.

2.3. Second Order Arithmetic

• The systems Z2 and ACA0 are fully discussed in Simpson’s encyclopedic
reference [Si-2]. Z2 is often referred to as second order arithmetic5, or as
analysis. ACA0 is the subsystem of Z2 with the comprehension scheme
limited to formulas with no second order quantifiers.

• Models of second order arithmetic (and its subsystems) are of the two-
sorted form (M,A), where M is a model in the language LA, and A is a
family of subsets of M . Since coding apparatus is available in the models
of arithmetic M considered here, we shall use expressions such as “f ∈ A”,
where f is a function, as a substitute for the more precise but lengthier
expression “the canonical code of f is in A”.

• For L ⊇ LA, PA(L) is PA augmented by the induction scheme for all L-
formulas. Note that if (M,A) ² ACA0, then (M, S)S∈A ² PA(L), where
L is the extension of LA obtained by adding a unary predicate for each
S ∈ A.

5Some authors, especially those belonging to the Polish school of logic (e.g., [Mo-1]), use A−2
for the system Z2 (and A2 for Z2 plus the choice scheme).
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3. AUTOMORPHISMS AND ACA0

The main results of this section are Theorem A and Theorem B. Theorem A
establishes a strong “reversal” of Theorem 1.1(b), and Theorem B is the analogue
of Theorem 1.1(b) for models of ACA0.

3.1. ACA0 from Automorphisms

Theorem A. If N ² I∆0 and j is an automorphism of N such that the fixed
point set M of j is a proper initial segment of N, then (M, SSyM (N)) ² ACA0.

Before presenting the proof of Theorem A, let us point out an important corollary
obtained by coupling Theorem A with Theorem 1.1(b):

Corollary 3.1 The following are equivalent for completions T of I∆0 :

(a) T ` PA;
(b) Every model M of T has a proper e.e.e. N such that for some automor-

phism j of N, M is the fixed point set of j;
(c) Some model M of T has a proper end extension N such that N ² I∆0 and

for some automorphism j of N, M is the fixed point set of j.

The proof of Theorem A relies on Lemmas A.0 through A.4 below. Lemmas A.0
and A.1 show the preliminary result that M satisfies I∆0+ Exp + Superexp (where
Superexp is the axiom stating that the function Superexp(x, x) is total). Indeed,
the strategy of the proof of Lemma A.1 can be used to establish that M is closed
under all primitive recursive functions, thus showing that M is a model of PRA
(primitive recursive arithmetic). However, the totality of the Ackermann function
does not seem to be obtainable via this strategy. These first two Lemmas are used
in Lemma A.2 to show that we can replace the end extension N of M in Theorem
A, if necessary, by a model of I∆0 + Exp. Lemma A.2 and Theorem 2.2 together
allow us the luxury of accessing a decent amount of set theory within an initial
segment of N containing M via Ackermann coding, thereby providing streamlined
proofs of the central Lemmas A.3 and A.4 without having to go through laborious
calculations dealing with Ackerman coding.

• For the rest of this section we make the blanket assumption that M,N, and
j are as in the statement of Theorem A. In particular, M is the fixed point
set of j, and N is a proper end extension of M.

Lemma A.0. M ² I∆0.

Proof: Clearly M is closed under the operations of N. Since ∆0-predicates are
absolute for end extensions, this shows that M inherits I∆0 from N.
¤
Lemma A.1. Exp and Superexp both hold in M.

Proof: We only verify Exp in M since the verification of the totality of the
superexponential function uses an identical strategy and is left to the reader. Recall
that there is a ∆0-predicate that reasonably expresses “2x = y”. Let

I := {x ∈ N : N ² ∃y(2x = y)}.



ARITHMETIC AND AUTOMORPHISMS 7

Note that I is closed downward in M and I ∩M has no last element since M ² I∆0

and I∆0 is able to prove that the set of numbers x on which 2x is defined is closed
under both predecessors and immediate successors. To show that Exp holds in M,
it suffices to show that M ⊆ I since if x is fixed by j, and 2x exists in N, then 2x

is definable from x within N and must therefore also be fixed by j. Next, let

J := {y ∈ N : N ² ∃x (2x = y)}.
It is easy to see that if J is unbounded in N then M ⊆ I, so our proof would be
complete once we establish that J is unbounded in N. Suppose, on the contrary,
that some a ∈ N is an upper bound of J . Then the set

{y < a : N ² ∃x < a (2x = y)}
has a maximum element by Lemma A.0 and ∆0-MAX (Lemma 2.1(b)) since it is
the solution set of a ∆0-predicate, thus leading to the absurd conclusion that I has
a maximum element.
¤
Lemma A.2. There is an initial segment N∗ of N that properly contains M such
that N∗ := (N∗, · · ·) is a model of I∆0 + Exp, and j ¹ N∗ is an automorphism.

Proof: Let ψ(x, y) be a ∆0 predicate for y = SuperExp(x, x) and let b ∈ N\M.
By Lemma A.1 for every m ∈ M,

N ² ∃y < b ψ(m, y).

Therefore, by ∆0-OVERSPILL (Lemma 2.1(c)) there is an element a ∈ N\M for
which SuperExp(a, a) is well-defined in N. This implies that the elements

2a, 22a

, · · ·, SuperExp(n, a), · · · (n ∈ ω)

are all well-defined within N. To define N∗, assume without loss of generality that
a < j(a) (else replace j by j−1), and let

N∗ :=
⋃

k∈ω

⋃
n∈ω

[0, SuperExp(n, jk(a))]N.

It is easy to verify that N∗ ² I∆0 + Exp, and j ¹ N∗ is an automorphism.
¤

Before establishing the next lemma6, we need to recall the key notion of strong
cuts, first introduced by Kirby and Paris [KP]:

• Suppose N is a model of I∆0 and M is a cut of N. M is a strong cut of N,
if for each function f whose graph is coded in N (via Ackermann’s ∈) and
whose domain includes M, there is some s in N , such that for all m ∈ M,

f(m) /∈ M iff s < f(m).

Lemma A.3. M is a strong cut of N.

Proof: We first observe that it suffices to show that M is a strong cut of the
model N∗ of Lemma A.3. Recall that by Theorem 2.2, we have access to “bounded”
set theoretic reasoning within N∗. Suppose f ∈ N∗ codes the graph of a function
f whose domain includes M . It is easy to see that f /∈ M. So if g := j(f), then
g /∈ M, and f 6= g. Therefore, if g is the function that is coded by g, then:

∀m ∈ M [f(m) = g(m) ⇐⇒ f(m) ∈ M ].

6This lemma was inspired by the results of Kaye, Kossak, and Kotlarski [KKK].
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We wish to find s ∈ N∗ such that for all m ∈ M, f(m) /∈ M iff s < f(m). Without
loss of generality there is some m0 ∈ M with f(m0) /∈ M. Fix c ∈ N∗ such that
cE contains f, g, and every m ∈ M (recall: cE is {x ∈ N : xEc}, where E is
Ackermann’s ∈ in the sense of N). Consider the function h(x) defined within M on
the interval [m0, c] by

h(x) := µy ≤ c [∃z ≤ x(y = f(z) 6= g(z)],

where µy ≤ c is the (truncated) least number operator, defined via the equation

[z := µy ≤ c ϕ(y)] iff [z is the first solution y of ϕ, if y ≤ c; else z = c].

Note that if m ∈ M with m0 ≤ m then h(m) /∈ M , and if m0 ≤ m ≤ m′, then
h(m′) ≤ h(m). Moreover,

(1) the graph of h is defined by a ∆0-formula ϕ(x, y) with parameters f and g;
and

(2) m < h(m) for all m ∈ M with m ≥ m0.

Therefore, (1), (2), and ∆0-OVERSPILL (Lemma 2.1(c)) within N∗ together imply
that there is some s ∈ N∗\M such that s < h(s) holds in N∗. This shows that s
is the desired lower bound for elements of the form f(m), where m ∈ M and
f(m) /∈ M .
¤

Kirby and Paris proved that strong cuts of models of PA are themselves models
of PA [KP, Proposition 8]. An analysis of their proof reveals the stronger result
below7.

Lemma A.4. Let A := SSyM (N) and L := LA∪{S : S ∈ A}. For every L-formula

ϕ(x1, · · ·, xm),

with free variables x1 · ··, xm, there is some ∆0-formula

θϕ(x1, · · ·, xm, b1, · · ·, bn),

where b1, · · ·, bn is a sequence of parameters from N , such that for all sequences
a1, · · ·, am of elements of M,

(M, S)S∈A ² ϕ(a1, · · ·, am) iff N ² θϕ(a1, · · ·, am, b1, · · ·, bn).
Proof: In what follows N∗ is as in Lemma A.2. θϕ is built by recursion on the
complexity of ϕ :

• If ϕ is an atomic formula of the form Si(v), where v is a term, then choose
b ∈ N such that bF ∩M = Si, and define θϕ := (v ∈ b). For other atomic
formulas ϕ, θϕ := ϕ.

• θ¬δ := ¬θδ;
• θδ1∨δ2 := θδ1 ∨ θδ2 ;
• If ϕ = ∃vδ(v, x1, · · ·, xt), then fix some c ∈ N\M and consider the function

f(x1, · · ·, xt) defined in N∗ on [0, c]t by:

f(x1, ···, xt) :=
{

µv ≤ c such that θδ(v, x1, · · ·, xt), if ∃v ∈ c θδ(v, x1, · · ·, xt);
0, otherwise.

Note that the graph of f is defined by a ∆0(L)-formula within N∗ and so
by Theorem 2.2 f is coded in N∗ and therefore in N. Hence, we can use

7As noted by one of the referees, this result also appears in Kirby’s dissertation [Ki-1].
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Lemma A.3 to invoke the strength of M in N to find some s ∈ N , such
that for all m ∈ M, f(m) ∈ M iff f(m) ≤ s. Now define:

θϕ := ∃v ≤ s θδ(v, x1, · · ·, xt).

¤
Proof of Theorem A: Let A and L be as in Lemma A.4. It is easy to see that

every nonempty member of A has a first element in M (since N satisfies I∆0). To
establish the arithmetical comprehension scheme in (M,A), consider any L-formula
ϕ(x) with precisely one free variable x. We wish to show that

{m ∈ M : (M,A) ² ϕ(m)} ∈ A.

Let θϕ be as in Lemma A.4 and fix some c ∈ N\M. By Theorem 2.2 (part 5), there
is an element d ∈ N that codes {x < c : N ² θϕ(x)}. Therefore, by Lemma A.4

{m ∈ M : (M,A) ² ϕ(m)} = dE ∩M ∈ A.

¤

3.2. Automorphisms from ACA0

The principal result of this section is Theorem B. We should emphasize that
Theorem B follows from Gaifman’s work in [G], but we have decided to present
a detailed proof here for two reasons. Firstly, this theorem is only implicit in
Gaifman’s paper, and therefore a detailed presentation of this significant result
is of some value. Secondly, the method of iterated ultrapowers modulo generic
ultrafilters developed here for the proof of Theorem B is also employed in the proof
of Theorem C (Section 4.1) and a detailed development in this section allows us to
later skip some details in the proof of Theorem C.

Theorem B. Suppose (M,A) is a countable model of ACA0. There is a proper
elementary end extension N of M which satisfies the following two properties:

(a) N possesses an automorphism j whose fixed point set is precisely M ;
(b) SSyM (N) = A.

The proof of Theorem B is presented at the end of this section once the machinery
of generic ultrafilters and iterated ultrapowers have been put into place. However,
we can easily describe the high-level strategy of the proof: N is obtained by an
iterated M-ultrapower along the linearly ordered set of integers Zmodulo a “generic
ultrafilter”, and the desired automorphism j of N is induced by the automorphism
n 7→ n + 1 of Z.

3.2.1. Generic Ultrafilters

Suppose (M,A) is a countable model of ACA0. Clearly A is a Boolean algebra.
Our goal is to construct ultrafilters U over A with certain desirable combinatorial
properties. We shall employ the conceptual framework of forcing in order to effi-
ciently present the necessary bookkeeping arguments in our construction8. Let P
be the poset

{S ∈ A : S is unbounded in (M, <)},
ordered under inclusion.

8A closely related notion of forcing, formulated by Gaifman, was employed in [AH, Sec. 1].
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• A subset D of P is dense if for every X ∈ P there is some Y ∈ D with
Y ⊆ X.

• U ⊆ P is a filter if it is (1) closed under intersections and (2) is upward
closed.

• A filter U ⊆ P is A-generic over (M,A) if U meets every dense subset D
of P which is parametrically definable in (M,A).

• A filter U ⊆ P is (M,A)-complete if for every f : M → [0, a]M, where
a ∈ M and f ∈ A, there is some X ∈ U such that f is constant on X.

Note that if U is (M,A)-complete, then U is a nonprincipal ultrafilter on A since
for each Y ∈ A, the characteristic function of Y is constant on some member of
U . We therefore refer to (M,A)-complete filters as ultrafilters. Generic ultrafilters
have some special combinatorial properties. To discuss them we need the following
definitions and theorems.

• Let Γ be a canonical bijection between M×M and M. Every g : M → {0, 1}
codes a sequence 〈Sg

a : a ∈ M〉 of subsets of M , where

Sg
a := {b ∈ M : g(Γ(a, b)) = 1}.

• A filter U ⊆ P is (M,A)-iterable9 if U is (M,A)-complete, and for every
g ∈ A and g : M → {0, 1},

{a ∈ M : Sg
a ∈ U} ∈ A.

• Given a linearly order set (M,<), [M ]n is the set of increasing n-tuples
from M .

• Suppose (M,<) is a linear order and f : [M ]n → M . A subset X of M is
f -canonical if there is some S ⊆ {1, · · ·, n} such that for all sequences
s1 < · · · < sn, and t1 < · · · < tn of elements of X,

f(s1, · · ·, sn) = f(t1, · · ·, tn) ⇐⇒ ∀i ∈ S (si = ti).

Note that if S = ∅, then f is constant on [X]n, and if S = {1, · · ·, n}, then
f is injective on [X]n.

• A filter U ⊆ P is (M,A)-canonically Ramsey if for every f : [M ]n → M,
where n is a standard natural number, with f ∈ A, there is some X ∈ U
on which f is canonical.

• ω → ∗(ω)n is the statement in the language of second order arithmetic
which asserts that for every f : [ω]n → ω there is an unbounded X ⊆ ω
such that X is f -canonical.

Erdös and Rado [ER] proved that ω → ∗(ω)n holds for all n < ω. Their proof
derives ω → ∗(ω)n from ω → (ω)2n and is readily formalizable10 in ACA0 for each
fixed standard n, i.e.,

Theorem 3.2. ∀n ∈ ω, ACA0 ` ω → ∗(ω)n.

Remark 3.2.1. If ACA0 is replaced by Z2 (or just ACA0 plus the full schema of
induction) then “∀n ∈ ω” can be moved to the right hand side of the provability

9This terminology is motivated by the fact (discussed in Section 3.2.2) that the formation
of ultrapowers modulo iterable ultrafilters is amenable to iteration. Iterable ultrafilters are also
referred to as definable ultrafilters, e.g., as in [Ki-2], motivated by their intimate link with the
model theoretic notion of definable type.

10The text [GRS] includes a detailed proof of a special case of Theorem 3.2. See also [Ra] and
[Mile] for more perspicuous proofs of the full result.
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symbol `. It is known that ACA0 0 ∀n ∈ ω ω → (ω)n. This follows from a theorem
of Jockusch [Jo], which states that for each natural number n ≥ 2 there is a recursive
partition Pn of [ω]n into two parts such that Pn has no infinite Σn-homogeneous
subset11.

The usual proof establishing the existence of filters meeting countably many
dense sets shows:

Proposition 3.3. There is a generic filter U over every countable model (M,A).

The following result reveals the key properties of generic ultrafilters.

Theorem 3.4. If (M,A) is a model of ACA0 and U is (M,A)-generic, then
(a) U is (M,A)-complete;
(b) U is (M,A)-iterable;
(c) U is (M,A)-canonically Ramsey.

Proof:
(a): Given f ∈ A with f : M → [0, a]M, let

Df
1 := {Y ∈ P : f ¹ Y is constant}.

Df
1 is dense since for each X ∈ P, (M, X, f) ² PA(X, f).

(b): For X and Y in P, let us write X ⊆∗ Y (read: “X is almost contained in
Y ”) if X\Y is bounded in (M, <). Also, let “X decides Y ” abbreviate

“X ⊆∗ Y or X ⊆∗ M\Y ”.

Observe that to establish (b) it suffices to show that if g : M → {0, 1}, with g ∈ A,
then

Dg
2 = {Y ∈ P : ∀a ∈ M, Y decides Sg

a} is dense.
To show the density of Dg

2 suppose X ∈ P. We first claim that there is an A-coded
sequence F = 〈Fa : a ∈ M〉 satisfying the following two properties:

(∗) ∀a ∈ M , Fa = Sg
a ∩ X or Fa = X\Sg

a ;

(∗∗) ∀a ∈ M
⋂

b≤a

Fb is unbounded in X.

Argue within (M,A). For each s : [0, a] → {0, 1}, define 〈F s
b : b ≤ a〉 by:

F s
b :=

{
Sg

b ∩X, if s(b) = 1;
X\Sg

b , if s(b) = 0.

Consider the subtree τ of (2<ω)M consisting of functions s : [0, a] → {0, 1} such
that

⋂
b≤a

F s
b is unbounded in X. It is easy to see that τ has nodes of every rank

b ∈ M, because each level of τ gives rise to a partition of X into 2b pieces, so one
of the pieces must be unbounded since X itself is unbounded. By König’s lemma,
τ has a branch, which yields the desired sequence 〈Fa : a ∈ M〉.

We can now define Y = {ya : a ∈ M} ∈ P by induction within (M,A) such that
Y is almost contained in every Fa as follows:

• y0 is the first element of F0;
• ya+1 is the least member of

⋂
b≤a

Fb above {yb : b ≤ a}.

11See [W, p.25] for more detail on this matter. Note that ACA0 is referred to as PPA
(predicative Peano arithmetic) in [W].
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It is clear that Y decides each Sg
a . Therefore Dg

2 is dense.

(c): Suppose f : [M ]n → M , where n is a standard natural number, and f ∈ A.
Let

Df
3 := {Y ∈ P : f is canonical on Y }.

By Theorem 3.2, Df
3 is dense.

¤
Remark 3.4.1. By a theorem of Kunen, a Rudin-Keisler minimal ultrafilter on
P(ω) is already a Ramsey ultrafilter [Jec, Lemma 38.1]. Moreover, the proof of
the Erdös-Rado canonical partition theorem can be used to show that a Ramsey
ultrafilter on P(ω) is also canonically Ramsey. In the context of models of ACA0,
it is known that if U is 3-Ramsey12 over (M,A), then U is (M,A)-iterable and
n-Ramsey for all n ∈ ω [Ki-2, Theorem 2.4]. Coupled with [Ki-2, Theorem 6.5] and
the aforementioned Erdös-Rado proof, this shows that the following are equivalent
for an ultrafilter U over a model (M,A) of ACA0 :

(i) U is 3-Ramsey over (M,A);
(ii) U is both iterable and canonically Ramsey over (M,A);

(iii) U is a minimal end extension type over (M, S)S∈A in the sense of Gaifman
[G] (i.e., U is an iterable ultrafilter over (M,A) and for every function
f ∈ A with f : M → M , f is one-to-one or constant on a member of U).

It is also worth pointing out that the converse of Theorem 3.4 is false, i.e.,
“U is generic over (M,A)” is stronger than the above three conditions. This is
a consequence of the fact that (a) generic ultrafilters are not first order definable
in (M,A), and (b) there is a Ramsey ultrafilter on PL(ω) (the powerset of ω in
the sense of Gödel’s constructible universe) that is first order definable within the
model (ω,+, ·,PL(ω)). (a) follows from a standard forcing argument, and (b) can
be established by coupling the fact that there is a well-ordering of PL(ω) that is
definable in (ω, +, ·,PL(ω)) [Jec, Theorem 97] with the proof of the existence of a
Ramsey ultrafilter assuming the continuum hypothesis [Jec, p.478].

3.2.2. Ultrapowers and Iterations

Gaifman [G] refined the MacDowell-Specker Theorem by showing that if L is a
countable13 language extending LA, M is a model of PA(L) of any cardinality, and
A is the family of definable subsets of M, then there is an e.e.e. N of M such that
A = SSyM (N). In the jargon of model theorists of arithmetic, this is rephrased
as: if L is countable, then every model of PA(L) has a conservative e.e.e. The
first result of this section is an adaptation of Gaifman’s result tailormade for our
purposes.

Lemma 3.5. Suppose (M,A) is a model of ACA0. The following two conditions
are equivalent:

(a) There exists a nonprincipal (M,A)-iterable ultrafilter U over (M,A).
(b) (M, S)S∈A has a proper e.e.e. (N, S∗)S∈A such that A = SSyM (N).

12Here U is n-Ramsey over (M,A) if for every f : [M ]n → {0, 1} with f ∈ A, there is some
X ∈ U on which f is homogeneous.

13Mills [Mill] used a forcing construction to show that the countability assumption cannot be
dropped from Gaifman’s result.
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Proof: To show (a ⇒ b), let (N, S∗)S∈A be the ultrapower of (M, S)S∈A modulo
U , i.e., the universe N of N consists of the U-equivalence classes [f ] of functions f
from M into M such that f is coded by some element of A, and the operations on
N are defined as in the classical theory of ultrapowers, e.g., +N is defined by

[f ] +N [g] = [h] iff {m ∈ M : f(m) +M g(m) = h(m)} ∈ U .

Similarly, for each S ∈ A,

[f ] ∈ S∗ iff {m ∈ M : f(m) ∈ S} ∈ U .

The ÃLoś Theorem for ultrapowers goes through in this limited context, thanks to the
fact that every parametrically definable subset of (M, S)S∈A has a <M-least element
(and therefore the model (M, S)S∈A has definable Skolem functions). Consequently,
if U is a non-principal ultrafilter, then N is a proper elementary extension of M
(with the obvious identification of the U -equivalence classes of constant maps with
elements of M). It remains to verify (i) and (ii) below:

(i) M ⊆e N, and
(ii) A = SSyM (N).

To verify (i), suppose N ² [f ] ≤ m for some m ∈ M. Then for some X ∈ U ,
∀x ∈ X f(x) < m. Let f∗ be the function in A defined by f∗(x) = f(x) if
x ∈ X, and 0 otherwise. By (M,A)-completeness of U , there is some m0 ≤ m
and some Y ∈ U such that ∀x ∈ Y f∗(x) = m0. It is now easy to verify that
N ² [f ] = [f∗] = m0. To establish (ii), first, note that for each X ∈ A,

(M, X) ≺e (N, X∗) ² PA(X∗).

This shows that A ⊆ SSyM (N) since if d ∈ N\M, there is some c ∈ N such that c
precisely codes those elements of X∗ which are less than d. Therefore, X = cE∩M.
To see that SSyM (N) ⊆ A we need to invoke the assumption of iterability of U .
Given an element [f ] ∈ N , we wish to show

(1) {m ∈ M : N ² mE[f ]} ∈ A.

Observe that (1) is equivalent to

(2) {m ∈ M : {n ∈ M : M ² mEf(n)} ∈ U} ∈ A.

Let Xm = {n ∈ M : M ² mEf(n)}. By the iterability assumption,

(3) {m ∈ M : Xm ∈ U} ∈ A.

Therefore (1) holds. This completes the proof of (ii).

To show (b ⇒ a), assume (b) holds and fix c ∈ N\M. Consider U defined by

U := {S ∈ U : c ∈ S∗}.
The assumption that (M, S)S∈A is elementarily end extended by (N, S∗)S∈A can
now be invoked to verify that U is (M,A) complete, for if f ∈ A, a ∈ M, and
(M, f) ² “f : M → [0, a]”, then (N, f∗) ² “f∗ : N → [0, a]”. Note that since N is
end extended by M, f∗(c) ∈ M . It is now easy to verify that

{m ∈ M : f(m) = f∗(c)}
is the desired member of U on which f is constant. Similarly, by invoking the
assumption A = SSyM (N) we can show that U is also (M,A)-iterable, since if
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(M, g) ² “g : M → {0, 1}”, where g ∈ A, then Xg := {m ∈ M : c ∈ (Sg
m)∗} is a

member of U , and therefore

{m ∈ M : Sg
a ∈ U} = Xg ∈ A.

¤
For an (M,A)-iterable ultrafilter U , the fact that the U-based ultrapower does

not introduce new subsets of M allows one to iterate the ultrapower formation any
finite number of times to obtain the n-fold iterations UltU,n(M, S)S∈A for each
positive natural number n. Indeed, a finite iteration of length n can be obtained
in one step by defining an ultrafilter Un on Mn. To do so, suppose X ⊆ Mn+1 is
coded in A. By definition14,

(♣) X ∈ Un+1 iff {α1 : {〈α2, · · ·, αn+1〉 : 〈α1, α2, · · ·, αn+1〉 ∈ X} ∈ Un} ∈ U .

Remark 3.6. It is easy to see that Un concentrates on [M ]n. Moreover, if U is
n-Ramsey over (M,A) for some n ∈ ω, then

Un = {Y ⊆ Mn : ∃X ∈ U [X]n ⊆ Y }.
The process of ultrapower formation modulo U can be iterated along any linear

order L to yield the iterated ultrapower UltU,L(M, S)S∈A. To describe the isomor-
phism type of UltU,L(M, S)S∈A U one can either use a direct limit construction (as
originally formulated by Kunen [Ku], and often used in set theoretic literature) or,
equivalently, one can take the following model theoretic route (as in Gaifman [G]).
Given an iterable ultrafilter U we can define, for each positive natural number n,
a complete n-type Γn over the model (M, S)S∈A by defining Γn(x1, · · ·, xn) as the
set of formulas ϕ(x1, · · ·, xn) such that

{〈α1, · · ·, αn〉 : (M, S)S∈A ² ϕ(α1, · · ·, αn)} ∈ Un.

Here ϕ is a formula in the language L = LA ∪ {S : S ∈ A} (since for each m ∈ M,
{m} ∈ A, for all intents and purposes L has constant symbols for elements of M
as well). Then we augment the language L with a set of new constant symbols
{l : l ∈ L}, and define TU,L to consist of formulas of the form ϕ(l1, l2, · · ·, ln), where
ϕ(x1, ···, xn) ∈ Γn(x1, ···, xn) and l1 <L ··· <L ln. Since TU,L is a complete Skolemized
theory, UltU,L(M, S)S∈A can be meaningfully defined as the prime model of TU,L.

The following theorem, due to Gaifman [G], summarizes the key properties of
iterated ultrapowers15.

Theorem 3.7. Suppose U is an (M,A)-iterable ultrafilter over a model (M,A) of
ACA0, and L is a linearly ordered set. Let (N, S∗)S∈A := UltU,L(M, S)S∈A, and
cl :=

(
l
)N

.
(a) Elements of N are of the form f∗(cl1 , · · ·, cln), where f ∈ A, and l1 <L

· · · <L ln;
(b) For every L-formula ϕ(x1, · · ·, xn), and every increasing sequence l1 <L

· · · <L ln

N ² ϕ(cl1 , · · ·, cln) iff {〈α1, · · ·, αn〉 ∈ Mn : M ² ϕ(α1, · · ·, αn)} ∈ Un;

(c) {cl : l ∈ L} is a set of order indiscernibles in (N, S∗)S∈A;

14The iterability condition is invoked to ensure that Un+1 is well-defined via (♣).
15The analogue of this result for models of set theory with a weakly compact cardinal is due

to Kunen [Ku], and fully developed in [Jec] and [Kan].
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(d) Every automorphism h of L induces an automorphism

jh : (N, S∗)S∈A → (N, S∗)S∈A

defined by

jh(f∗(cl1 , · · ·, cln) = f∗(ch(l1), · · ·, ch(ln)).

• If U is also canonically Ramsey, then Theorem 3.7(d) can be strengthened
as follows:

Theorem 3.8. Suppose (M,A) ² ACA0, and let h is an automorphism of a
linearly ordered set L with no fixed points. If U is iterable and canonically Ramsey
over (M,A), then the fixed point set of the automorphism jh of UltU,L(M, S)S∈A
is precisely M .

Proof: Clearly jh fixes each a ∈ M since the constant map fa(x) = a is in A.
To see that jh fixes no member of N\M , suppose that

(1) f∗(ch(l1), · · ·, ch(ln)) = f∗(cl1 , · · ·, cln)

for some f∗(cl1 , · · ·, cln) ∈ N. Since f ∈ A, by Theorem 3.4(c) there is some X ∈ U ,
and some S ⊆ {1, · · ·, n} such that for all sequences a1 < · · · < an, and b1 < · · · < bn

of elements of X,

(2) f(a1, · · ·, an) = f(b1, · · ·, bn) ⇐⇒ ∀i ∈ S (ai = bi).

Moreover, since Xn ∈ Un,

(3) UltU,L(M, S)S∈A ² 〈cl1 , · · ·, cln〉 ∈ Xn.

(1), (2), and (3) together imply that S = ∅, which in turn implies that f must be
constant on X. Therefore, f∗(cl1 , · · ·, cln) ∈ M.
¤

Proof of Theorem B: Let (M,A) be a model of ACA0. Fix some (M,A)-
generic ultrafilter U and let

(N, S∗)S∈A := UltU,L(M, S)S∈A,

where Z is the ordered set of integers. Consider the automorphism

n 7−→h n + 1

of Z. By Theorems 3.4 and 3.8 jh is an automorphism of (N, S∗)S∈A whose fixed
point set is precisely M .
¤

3.3. An Arithmetical Theory with a Built-in Automorphism

Consider the theory V A formulated in LA ∪ {j}, where j is a unary function
symbol, obtained by augmenting the axioms of I∆0 with a single axiom expressing

“j is a nontrivial {+, ·}-automorphism whose fixed-point set is closed downwards”.

This theory was formulated by Albert Visser who noted that Corollary 3.1 implies
that PA can be interpreted in V A. This led Visser to ask:
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• Visser’s Question: what is the interpretability16 relationship between
ACA0 and V A?

In this section we partially answer Visser’s question by establishing that ACA0 can
be faithfully interpreted within V A. Since the proofs of Theorem 1.1(b) and Theo-
rem A are both formalizable within ACA0, and ACA0 is a conservative extension
of PA for arithmetical sentences, the statement “V A is equiconsistent with PA”
is provable within PA (see Remark 3.9.3 for a refinement). As we shall see, an
analysis of the proof of Theorem A yields an interpretation δ of ACA0 within V A,
and Theorem B will show that δ is indeed a faithful interpretation.

Theorem 3.9. There is a faithful interpretation δ of ACA0 within V A.

Proof: Suppose (N, j) is a model of V A. Let M be the fixed point set of
j, and A := SSyM (N). By Theorem A, all axioms of PA are true in M. This
can be syntactically reformulated by saying that if for each formula ϕ of LA, ϕM

is the formula in LA ∪ {j} obtained by restricting all the quantifiers of ϕ to the
(N, j)-definable cut M , then by Theorem 1.1(b), Theorem A, and the completeness
theorem for first order logic:

For all sentences ϕ of LA, PA ` ϕ iff V A ` ϕM .

This shows that the map ϕ 7−→ ϕM describes a faithful interpretation of PA within
V A. In order to interpret ACA0 within (N, j) define an equivalence relation ≡ by

a ≡ b iff ∀x∀y(M(x) ∧M(y) → (E(x, a) ↔ E(x, b)),

where M(x) is the formula “x = j(x)” and E(x, y) is Ackermann’s ∈. Note that

[(N, j) |= a ≡ b] iff [aE ∩M = bE ∩M ],

which shows that ≡ interprets the equality relation among sets. Therefore, we can
interpret the two-sorted model (M,A,∈, =A) within (N, j) by interpreting M via
I(x), A via N/ ≡, and the membership relation ∈ (between members of M , and
members of A), via E(x, y). So, by Theorem A, ACA0 is uniformly interpretable
in every model of V A. In syntactical terms, this idea can be used to show:

Proposition 3.9.1. For every formula ψ(v1, · · ·, vs, X1, · · ·, Xt) in the language
of second order arithmetic, whose first order free variables are v1, · · ·, vs, and whose
second order free variables are X1, · · ·, Xt, there is a formula

δψ(x1, · · ·, xs, xs+1, · · ·, xs+t)

in the language LA∪{j} such that the following are equivalent for all models (N, j)
of V A, all sequences a1, · · ·, as from M, b1, · · ·, bt from N, and S1, · · ·, St from
SSyM (N) such that Si = (bi)E ∩M for 1 ≤ i ≤ t, where M is the fixed point set
of j:

(i) (M, SSyM (N)) ² ψ(a1/v1, · · ·, as/vs, S1/X1, · · ·, St/Xt).

16See Sections 1 and 2 of Visser’s paper [V] in this volume for the precise definition of inter-
pretability. The intuitive idea can be explained as follows: a theory T1 formulated in a language
L1, is interpretable in a theory T2 formulated in a language L2, if there is a “well-behaved” func-
tion δ, which translates formulae ψ from L1 into formulae δψ in L2 such that for all sentences ψ
of L1,

T1 ` ψ implies T2 ` δψ .

If, in additon, the converse of the above implication holds for all sentences ψ of L1, δ is said to
be a faithful interpretation.
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(ii) (N, j) ² δψ(a1/x1, · · ·, as/xs, b1/xs+1, · · ·, bt/xs+t).

We can now use Theorem A, Theorem B, Proposition 3.9.1, and the complete-
ness theorem of first order logic together to conclude that for all sentences ψ of
second order arithmetic, ACA0 ` ψ iff V A ` δψ. Therefore, ACA0 is faithfully
interpretable in V A via the interpretation δ.
¤

Corollary 3.9.2. V A has superexponential speed-up over PA (assuming the
consistency of PA). More specifically, for every natural number k there is a theorem
ϕk of PA whose interpretation has a proof of length dk within V A such that the
shortest proof of ϕk within PA is longer than Superexp(k, dk).

Proof: This is a direct consequence of interpretability of ACA0 within V A
and the independently obtained results of Friedman and Pudlák on the speed-up
of ACA0 over PA. More specifically, let us write T `≤k ψ for “there is a proof of
ϕ from T of length k”, and T `>k ψ for “T ` ψ and all proofs of ϕ from T are
longer than k”. Given a sentence ϕ in the language of Peano arithmetic, let ϕ be
the canonical interpretation of ϕ within ACA0. As shown by Friedman ([Fr], [Sm])
and Pudlák17 [Pu-2, Corollary 4.5]:

(1) There is a sequence 〈ϕk : k ∈ ω〉 of theorems of PA and an increasing se-
quence 〈dk : k ∈ ω〉 of natural numbers such that for all k ∈ ω :

ACA0 `≤dk
ϕk, but PA `>Superexp(k,dk) ϕk.

On the other hand, ACA0 is finitely axiomatizable18 and therefore there is a single
theorem τ of ACA0 with the same set of consequences as ACA0 itself. Since V A
interprets ACA0 via δ of Theorem 3.9, V A `≤c δτ for some c. Therefore, for all
sentences ψ in the language of second order arithmetic,

(2) τ `≤k ψ → V A `≤c+k δψ.

This is easy to see: if 〈ϕn : 1 ≤ n ≤ k〉 is a Hilbert-style proof of ψ from τ (so
ϕk = ψ), then we can obtain a proof of δψ from V A of length k + c by first proving
δτ in c-steps from V A, and then following the resulting proof with 〈δϕn : 1 ≤ n ≤ k〉.
The result now easily follows from coupling (1) and (2).
¤

Remark 3.9.3. The proof of Theorem 3.9 can be used to show that I∆0 + Exp
proves Con(V A) → Con(ACA0), and therefore

I∆0 + Exp ` Con(V A) → Con(PA).

Coupled with I∆0 +Exp 0 Con(PA) → Con(ACA0) ([Pu-2], [Fr]), this shows that

I∆0 + Exp 0 Con(PA) → Con(V A).

17The exposition in [Pu-2] is geared toward the speed-up of GB (Gödel-Bernays theory of
classes) over ZF . It is well-known that the same machinery can be used to show the speed-up of
ACA0 over PA.

18See [HP, Ch.III, Sec.1(b)] or [Si-2, Lemma VIII.1.5].
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4. AUTOMORPHISMS AND SECOND ORDER ARITHMETIC

In the previous section we saw that there is a close relationship between models
of PA and ACA0 and fixed point sets of automorphisms of models N of I∆0. In this
section we pursue this theme by investigating a minimal condition (M -amenability)
under which the fixed point sets of automorphisms of bounded arithmetic give rise
to models of full second order arithmetic Z2.

4.1. Amenable Automorphisms from Z2

The following definition is suggested by the work of Solovay on automorphisms
of models of set theory with a weakly compact cardinal [Sol, Section 3.5, Criteria
1 and 2].

• Suppose N is a model of I∆0, and M is a cut of N. An automorphism
j of N is M -amenable if the fixed point set of j is precisely M , and for
every formula ϕ(x, j) in the language LA ∪ {j}, possibly with suppressed
parameters from N,

{m ∈ M : (N, j) ² ϕ(m, j)} ∈ SSyM (N).

Theorem C. Suppose (M,A) is a countable model of Z2+Π1
∞-DC. There exists an

e.e.e. N of M that has an M -amenable automorphism j such that SSyM (N) = A.

Proof: Before beginning the proof, recall that Π1
∞-DC is the scheme in the

language of second order arithmetic consisting of formulas of the form

∀n∀X∃Y θ(n,X, Y ) → [∀X∃Z(X = (Z)0 and ∀n θ(n, (Z)n , (Z)n+1)],

where ϕ is allowed to have number or set parameters, and (Z)n = {i : Γ(i, n) ∈ Z},
where Γ is a canonical pairing function. See [Si-2, Sec.VII.6] for more on choice
schemes in second order arithmetic19.

The proof of Theorem C has two distinct stages. In the first stage, a well-
behaved Ramsey ultrafilter U is constructed by forcing, while in the second stage,
an internal iterated ultrapower modulo U is used to exhibit the desired model N
and the M -amenable automorphisms j of N.

Stage 1: Forcing a Ramsey ultrafilter

Forcing was used only as an efficient bookkeeping tool in Section 3.2. In contrast,
here it is invoked in an essential manner to adjoin a generic ultrafilter to a model
of second order arithmetic20. Our notion of forcing P (and therefore our notion of
genericity) is the same as the one used already in Section 3.2, but in this section
we shall invoke substantive properties of forcing to show that P-forcing over a
countable model (M,A) of second order arithmetic with dependent choice produces
a generic ultrafilter U such that the expansion (M,A,U) continues to satisfy the

19N.B. the formulation of DC in [Si-2] is slightly different from the above, but equivalent.
20I am indebted to one of the referees for suggesting the self-contained approach for this stage.

In the original proof of Theorem C, I used a forcing construction of Mostowski [Mo-1] to adjoin
a global well-ordering C of A so that the comprehension scheme of Z2 continues to hold even
for formulas mentioning C. It is then routine to define a Ramsey ultrafilter within (M,A,C) by
implementing the classical proof of the existence of a Ramsey ultrafilter using CH. Note that in
his original paper [Mo-1], Mostowski claimed that his forcing construction works for countable
models of Z2 with the choice scheme. However, as observed by Simpson [Si-1], Mostowski’s proof
relies on the stronger scheme of dependent choice. This is acknowledged in [Mo-2].
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comprehension schema in the language of second order arithmetic for formulae that
refer to U . To verify this, we begin with some definitions.

• Let L2(U) be the result of augmenting the language of second order arith-
metic L2 with a new predicate U with the understanding that U is a pred-
icate of sets, i.e., models of L2(U) are of the form (M,A,U) where (M,A)
is an L2-structure, and U ⊆ A.

• The forcing language Φ is obtained by augmenting L2(U) with constant
symbols for each element of M ∪ A.

• Recall from Section 3.2 that P is {X ∈ A : X is unbounded in M}, ordered
under inclusion. The forcing relation is inductively defined as follows:
(1) X ° (Y ∈ U) iff X ⊆ Y (where Y ∈ A); for all other atomic formulae

ϕ, X ° ϕ iff ϕ holds in (M,A).
(2) X ° (ϕ1 ∨ ϕ2) iff X ° ϕ1 or X ° ϕ2.
(3) X ° (¬ϕ) iff ∀Y ⊆ X(Y 1 ϕ).
(4) X ° (∃xϕ(x)) iff for some m ∈ M such that X ° ϕ(m).

The following lemma is standard and is stated without proof. Note that it holds
for all L2-structures (M,A).

Lemma C.1.
(1) (Monotonicity) If X ° ϕ and Y ⊆ X, then Y ° ϕ.
(2) (Definability) For every formula ϕ(v1, ···, vs, X1, ···, Xt) of L2(U), there is a

formula Forceϕ(X, v1, ···, vs, X1, ···, Xt) of L2(U) such that for every model
(M,A) of L2, every X ∈ P, every m1, ···,ms ∈ M , and every S1, ···, St ∈ A,
X ° ϕ(m1, ···,ms, S1, ···, St) iff (M,A) ² Forceϕ(X, m1, ···, ms, S1, ···, St).

(3) (Truth-and-Forcing) If U is P-generic over (M,A), then for every Φ-
sentence ϕ, (M,A,U) ² ϕ iff X ° ϕ for some X ∈ U .

Lemma C.2. Suppose X and Y are elements of P whose symmetric difference
X∆Y is finite in the sense of M. For any sentence ϕ of Φ, X ° ϕ iff Y ° ϕ.

Proof: Recall from Theorem 3.4(a) that generic filters are (M,A)-complete.
Also note that for any (M,A)-complete ultrafilter U , X ∈ U iff Y ∈ U . The result
now easily follows from Truth-and-Forcing.
¤

The next two results unveil the key properties of generic ultrafilters. From here
on, we use the abbreviation X ‖ ϕ for “X ° ϕ or X ° ¬ϕ”.

Lemma C.3. If (M,A) is a model of Z2 + Π1
∞-DC, then for any unary formula

ϕ(x) of Φ, the following set Dϕ is dense in P

Dϕ := {Y ∈ P : ∀m ∈ M (Y ‖ ϕ(m)}.
Proof: Let θ(X,Y, n) be the formula “X ⊇ Y and Y ‖ ϕ(n)”. It is easy to see

that
(M,A) ² ∀n∀X∃Y θ(n,X, Y ).

Given any X ∈ P, by the dependent choice scheme there is some element of A that
codes a sequence 〈X0, X1, X2, · · ·, Xm, · · ·〉m∈M of elements of P such that (1) and
(2) below hold in (M,A).

(1) X0 := X and ∀m ∈ M Xm+1 ⊆ Xm;
(2) ∀nθ(n,Xn, Xn+1).
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Next, construct Y by setting Y := {ym : m ∈ M} ∈ P, where ym is defined within
(M,A) via the recursion:

• y0 is the first element of X0;
• ym+1 is the least member of Xm above {yi : i ≤ m}.

Clearly Y ⊆ X and Y \Xm is M-finite for all m ∈ M. Therefore, since by Mono-
tonicity, Y ∩Xm ‖ ϕ(m) for all m ∈ M, by Lemma C.2, Y ∈ Dϕ.
¤
Lemma C.4. If (M,A) is a model of Z2 + Π1

∞-DC and U is P-generic over
(M,A), then for any unary Φ-formula ϕ(x),

Sϕ := {m ∈ M : (M,A,U) ² ϕ(m)} ∈ A.

Proof: By Lemma C.3 there is a condition Y0 ∈ U such that for all m ∈ M ,
Y0 ‖ ϕ(m). It is routine to verify (using Truth-and-Forcing) that

{m ∈ M : (M,A,U) ² ϕ(m)} = {m ∈ M : (M,A,U) ² “Y0 ° ϕ(m)”}.
Therefore Sϕ is the solution set of a unary formula L2-formula (by definability of
the forcing relation), and therefore by the comprehension scheme, Sϕ ∈ A.
¤

Stage 2: Internally building an iterated ultrapower

In this stage of the proof, we employ the machinery of iterated ultrapowers
discussed in Section 3.2.2, except that the entire construction is carried out inter-
nally within (M,A,U). To see how this works, consider a generic ultrafilter U over
(M,A). By Theorem 3.4, U is (M,A)-iterable. Moreover, in light of Remark 3.2.1
it is easy to see that U is also m-canonically Ramsey21 over (M,A) for all m ∈ M .
Since the construction of the m-type Γm uses the ultrafilter Um, and m might be
nonstandard, we need to overcome the following obstacle: Un was defined by an
external induction in Section 3.2.2 via equation (♣) for standard natural numbers
n. Therefore, to define Um for nonstandard m, we seem need to work within third
order arithmetic in order to carry out the necessary recursion. However, in light of
Remark 3.6, there is a way out: since U is m-Ramsey over (M,A), we can use the
following recursion-free definition of Um within (M,A,U):

Um := {Y ⊆ Mm : ∃X ∈ U [X]m ⊆ Y }.
Therefore for any linear order L ∈ A we can define the internally iterated ultra-
power Ult∗U,L(M, S)S∈A by carrying out the construction of Section 3.3 entirely
within (M,A,U). Note that the key difference between the internal and the exter-
nal iterated ultrapower is that the external iterated ultrapower can be viewed as a
direct limit of models that result from iterating the ultrapower formation process
finitely many times, while the internal iteration can be viewed as a direct limit
of models that result from iterating the ultrapower formation process M-finitely
many times. We can therefore choose L ∈ A such that L has an automorphism
h ∈ A with no fixed points (e.g., L = the ordered set of integers in the sense of
M, and h(n) = n + 1). By minor variants of Theorems 3.7 and 3.8, there is an
automorphism

j∗h : Ult∗U,L(M, S)S∈A → Ult∗U,L(M, S)S∈A

21U is m-canonically Ramsey over (M,A), where m ∈ M, if for every f : [M ]m → M with
f ∈ A, there is some X ∈ U that is f -canonical.
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that is definable within (M,A,U), and whose fixed point set is precisely M . Since j∗h
is outright definable in (M,A,U), by Lemma C.4 j is M -amenable. This concludes
the proof of Theorem C.
¤

4.2. Z2 from Amenable Automorphisms

We now show that the full strength of second order arithmetic is needed in the
proof of Theorem C.

Theorem D. If M ² I∆0 and N is an end extension of M satisfying I∆0 such
that N has an M -amenable automorphism, then (M, SSyM (N)) ² Z2.

Proof: By Theorem A, (M, SSyM (N)) ² ACA0. Therefore, we only need to
verify the comprehension scheme of Z2. Recall the mapping ψ 7−→ δψ of formulas
of second order arithmetic to formulas of LA ∪{j} of Proposition 3.9.1 in the proof
of Theorem 3.9. If ψ(x) is a unary formula of second order arithmetic (possibly
with suppressed set or number parameters), then by Proposition 3.9.1

{a ∈ M : (M, SSyM (N)) ² ψ(a)} = {a ∈ M : (N, j) ² δψ(a)}.
Coupling this with the M -amenability of j, it now becomes evident that (M, SSyM (N))
satisfies the comprehension scheme.
¤

Let T ∗ be the extension of the theory T of Section 3.3 obtained by adding a
scheme asserting that j is an M -amenable automorphism (where M as usual is the
fixed point set of j). The proof of Theorem C, coupled with the well-known fact
that the theory Z2 + Π1

∞-DC can be interpreted within Z2 via the “ramified ana-
lytical hierarchy” [Si-2] shows that T ∗ can be interpreted within Z2. Furthermore,
Proposition 3.9.1 and Theorem D together show that Z2 is interpretable within T ∗.
Hence:

Theorem 4.1. The theories Z2 and T ∗ are equiconsistent.

5. FURTHER RESULTS AND OPEN QUESTIONS

5.1. Consequences for NFU

As mentioned in the introduction, the main results of this paper were obtained
by the author in the context of the metamathematical study of certain extensions
of the theory NFU , where NFU is Jensen’s variant [Jen] of Quine’s system of
set theory New Foundations NF [Q]. NFU is obtained from NF by relaxing
the extensionality axiom in order to allow urelements. The consistency of NF
relative to any ZF -style set theory remains an open problem, but Jensen showed
the consistency of NFU relative to a fragment of ZF -set theory. Theorems A,
B, C, and D have been used in the joint work of Robert Solovay and the author
to establish the results reported in this section. Here we only briefly define the
concepts needed to state our results, and refer the reader to [Fo] or [Ho-1] for
detailed background information and references.

• X is Cantorian if there is a one-to-one correspondence between X and the
set of its singletons {{v} : v ∈ X};

• X is strongly Cantorian if the map sending v to {v} (as v varies in X)
exists;
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• NFU−∞ is NFU plus the axiom “every set is finite”;
• NFUA−∞ is NFU−∞ plus the axiom “every Cantorian set is strongly

Cantorian”; and
• NFUB−∞ is the extension of NFUA−∞ obtained by adding a scheme

asserting that the intersection of any parametrically definable class with
the class of Cantorian sets is the result of the intersection of the extension
of some element with the class of Cantorian sets.

Of course, in ZF -style set theories every set is strongly Cantorian, but in NF and
NFU this is no longer true, e.g., the universal set of a model of NF or NFU is not
even Cantorian, and there are models of NFU + “there is an infinite set” + the
axiom of choice in which the set of finite cardinals is Cantorian, but not strongly
Cantorian. We are now ready to state the ramifications of Theorems A and B for
NFU :

Theorem 5.1. The following are equivalent for complete theories T in the language
LA of arithmetic:

(a) There is a model of NFUA−∞ whose class of Cantorian cardinals satisfies
T .

(b) T is an extension of PA.

Corollary 5.1.1. NFUA−∞ is equiconsistent with PA.

Furthermore, Theorem 4.1 can be used to show:

Theorem 5.2. NFUB−∞ is equiconsistent with Z2.

5.2. A Characterization of I∆0 + BΣ1 + Exp

In recent work [E-2], the author has established the following characterization
of the fragment I∆0 + BΣ1 + Exp of PA in terms of automorphisms. Here BΣ1 is
the scheme consisting of the universal closure of formulae of the form

[∀x < a∃y ϕ(x, y)] → [∃z∀x < a∃y < z ϕ(x, y)].

In what follows Ifix(j) denotes the largest initial segment of a model N of I∆0 that
is pointwise fixed under an automorphism j of N.

Theorem 5.3.

(a) Suppose M is a countable model of I∆0 +BΣ1+ Exp. M has a proper end
extension to a model N of I∆0 such that for some automorphism j of N,
Ifix(j) = M.

(b) If j is a nontrivial automorphism of some model N of I∆0, then Ifix(j)
is a model of I∆0 + BΣ1 + Exp.

Corollary 5.3.1. I∆0 + BΣ1 + Exp is the theory of the class of models whose
universes are of the form Ifix(j) for some nontrivial automorphism j of a model
of I∆0.
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5.3. Open Questions

• Question 1. Let V A be the theory discussed in Section 3.3. Can V A be
interpreted in ACA0?

• Question 2. Can Theorem D be strengthened by including the clause
“(M, SSyM (N)) satisfies Π1

∞-DC” in the conclusion?
• Question 3. Besides PA, Z2, and I∆0 + BΣ1 + Exp, are there other

arithmetical theories that can be naturally characterized in terms of auto-
morphisms?
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